Asosiy tarkibga oʻtish
Baholash
Tick mark Image
x ga nisbatan hosilani topish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\int t^{3}+2t^{2}+1\mathrm{d}t
Avval noaniq integralni baholang.
\int t^{3}\mathrm{d}t+\int 2t^{2}\mathrm{d}t+\int 1\mathrm{d}t
Summani muddatma-muddat integratsiya qiling.
\int t^{3}\mathrm{d}t+2\int t^{2}\mathrm{d}t+\int 1\mathrm{d}t
Har bir shartda konstantani qavsdan tashqariga oling.
\frac{t^{4}}{4}+2\int t^{2}\mathrm{d}t+\int 1\mathrm{d}t
k\neq -1 uchun integral \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} boʻlgani uchun, \int t^{3}\mathrm{d}t integralni \frac{t^{4}}{4} bilan almashtiring.
\frac{t^{4}}{4}+\frac{2t^{3}}{3}+\int 1\mathrm{d}t
k\neq -1 uchun integral \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} boʻlgani uchun, \int t^{2}\mathrm{d}t integralni \frac{t^{3}}{3} bilan almashtiring. 2 ni \frac{t^{3}}{3} marotabaga ko'paytirish.
\frac{t^{4}}{4}+\frac{2t^{3}}{3}+t
\int a\mathrm{d}t=at umumiy integrallar qoidasi jadvalidan foydalanib, 1 integralini toping.
\frac{x^{4}}{4}+\frac{2}{3}x^{3}+x-\left(\frac{0^{4}}{4}+\frac{2}{3}\times 0^{3}+0\right)
Xos integral bu integral hisoblashning yuqori chegarasida hisoblangan ifodaning boshlangʻich holatidan chiqarib tashlagan holda integral hisoblashning quyi chegarasida hisoblangan ifodaning boshlangʻich holatidir.
\frac{x^{4}}{4}+\frac{2x^{3}}{3}+x
Qisqartirish.