Baholash
\frac{x^{4}}{4}+\frac{2x^{3}}{3}+x
x ga nisbatan hosilani topish
x^{3}+2x^{2}+1
Viktorina
Integration
5xshash muammolar:
f ( x ) = \int _ { 0 } ^ { x } ( t ^ { 3 } + 2 t ^ { 2 } + 1 ) d t
Baham ko'rish
Klipbordga nusxa olish
\int t^{3}+2t^{2}+1\mathrm{d}t
Avval noaniq integralni baholang.
\int t^{3}\mathrm{d}t+\int 2t^{2}\mathrm{d}t+\int 1\mathrm{d}t
Summani muddatma-muddat integratsiya qiling.
\int t^{3}\mathrm{d}t+2\int t^{2}\mathrm{d}t+\int 1\mathrm{d}t
Har bir shartda konstantani qavsdan tashqariga oling.
\frac{t^{4}}{4}+2\int t^{2}\mathrm{d}t+\int 1\mathrm{d}t
k\neq -1 uchun integral \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} boʻlgani uchun, \int t^{3}\mathrm{d}t integralni \frac{t^{4}}{4} bilan almashtiring.
\frac{t^{4}}{4}+\frac{2t^{3}}{3}+\int 1\mathrm{d}t
k\neq -1 uchun integral \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} boʻlgani uchun, \int t^{2}\mathrm{d}t integralni \frac{t^{3}}{3} bilan almashtiring. 2 ni \frac{t^{3}}{3} marotabaga ko'paytirish.
\frac{t^{4}}{4}+\frac{2t^{3}}{3}+t
\int a\mathrm{d}t=at umumiy integrallar qoidasi jadvalidan foydalanib, 1 integralini toping.
\frac{x^{4}}{4}+\frac{2}{3}x^{3}+x-\left(\frac{0^{4}}{4}+\frac{2}{3}\times 0^{3}+0\right)
Xos integral bu integral hisoblashning yuqori chegarasida hisoblangan ifodaning boshlangʻich holatidan chiqarib tashlagan holda integral hisoblashning quyi chegarasida hisoblangan ifodaning boshlangʻich holatidir.
\frac{x^{4}}{4}+\frac{2x^{3}}{3}+x
Qisqartirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}