x ga nisbatan hosilani topish
-\frac{15}{\left(x-5\right)^{2}}
Baholash
\frac{3x}{x-5}
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{\left(x^{1}-5\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1})-3x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-5)}{\left(x^{1}-5\right)^{2}}
Har qanday ikki differensial funksiya uchun ikki funksiyaning koeffitsient hosilasi raqamlagichning hosila marotabasi maxraj minusi va barchasi kvadrat maxrajiga bo'lingan.
\frac{\left(x^{1}-5\right)\times 3x^{1-1}-3x^{1}x^{1-1}}{\left(x^{1}-5\right)^{2}}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\frac{\left(x^{1}-5\right)\times 3x^{0}-3x^{1}x^{0}}{\left(x^{1}-5\right)^{2}}
Arifmetik hisobni amalga oshirish.
\frac{x^{1}\times 3x^{0}-5\times 3x^{0}-3x^{1}x^{0}}{\left(x^{1}-5\right)^{2}}
Distributiv xususiyatdan foydalanib kengaytirish.
\frac{3x^{1}-5\times 3x^{0}-3x^{1}}{\left(x^{1}-5\right)^{2}}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
\frac{3x^{1}-15x^{0}-3x^{1}}{\left(x^{1}-5\right)^{2}}
Arifmetik hisobni amalga oshirish.
\frac{\left(3-3\right)x^{1}-15x^{0}}{\left(x^{1}-5\right)^{2}}
O'xshash hadlarni birlashtirish.
\frac{-15x^{0}}{\left(x^{1}-5\right)^{2}}
3 dan 3 ni ayirish.
\frac{-15x^{0}}{\left(x-5\right)^{2}}
Har qanday t sharti uchun t^{1}=t.
\frac{-15}{\left(x-5\right)^{2}}
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}