Asosiy tarkibga oʻtish
f uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

f^{2}-3f=-5
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
f^{2}-3f-\left(-5\right)=-5-\left(-5\right)
5 ni tenglamaning ikkala tarafiga qo'shish.
f^{2}-3f-\left(-5\right)=0
O‘zidan -5 ayirilsa 0 qoladi.
f^{2}-3f+5=0
0 dan -5 ni ayirish.
f=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 5}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -3 ni b va 5 ni c bilan almashtiring.
f=\frac{-\left(-3\right)±\sqrt{9-4\times 5}}{2}
-3 kvadratini chiqarish.
f=\frac{-\left(-3\right)±\sqrt{9-20}}{2}
-4 ni 5 marotabaga ko'paytirish.
f=\frac{-\left(-3\right)±\sqrt{-11}}{2}
9 ni -20 ga qo'shish.
f=\frac{-\left(-3\right)±\sqrt{11}i}{2}
-11 ning kvadrat ildizini chiqarish.
f=\frac{3±\sqrt{11}i}{2}
-3 ning teskarisi 3 ga teng.
f=\frac{3+\sqrt{11}i}{2}
f=\frac{3±\sqrt{11}i}{2} tenglamasini yeching, bunda ± musbat. 3 ni i\sqrt{11} ga qo'shish.
f=\frac{-\sqrt{11}i+3}{2}
f=\frac{3±\sqrt{11}i}{2} tenglamasini yeching, bunda ± manfiy. 3 dan i\sqrt{11} ni ayirish.
f=\frac{3+\sqrt{11}i}{2} f=\frac{-\sqrt{11}i+3}{2}
Tenglama yechildi.
f^{2}-3f=-5
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
f^{2}-3f+\left(-\frac{3}{2}\right)^{2}=-5+\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
f^{2}-3f+\frac{9}{4}=-5+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
f^{2}-3f+\frac{9}{4}=-\frac{11}{4}
-5 ni \frac{9}{4} ga qo'shish.
\left(f-\frac{3}{2}\right)^{2}=-\frac{11}{4}
f^{2}-3f+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(f-\frac{3}{2}\right)^{2}}=\sqrt{-\frac{11}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
f-\frac{3}{2}=\frac{\sqrt{11}i}{2} f-\frac{3}{2}=-\frac{\sqrt{11}i}{2}
Qisqartirish.
f=\frac{3+\sqrt{11}i}{2} f=\frac{-\sqrt{11}i+3}{2}
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.