Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

f^{2}+15f-42=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
f=\frac{-15±\sqrt{15^{2}-4\left(-42\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
f=\frac{-15±\sqrt{225-4\left(-42\right)}}{2}
15 kvadratini chiqarish.
f=\frac{-15±\sqrt{225+168}}{2}
-4 ni -42 marotabaga ko'paytirish.
f=\frac{-15±\sqrt{393}}{2}
225 ni 168 ga qo'shish.
f=\frac{\sqrt{393}-15}{2}
f=\frac{-15±\sqrt{393}}{2} tenglamasini yeching, bunda ± musbat. -15 ni \sqrt{393} ga qo'shish.
f=\frac{-\sqrt{393}-15}{2}
f=\frac{-15±\sqrt{393}}{2} tenglamasini yeching, bunda ± manfiy. -15 dan \sqrt{393} ni ayirish.
f^{2}+15f-42=\left(f-\frac{\sqrt{393}-15}{2}\right)\left(f-\frac{-\sqrt{393}-15}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-15+\sqrt{393}}{2} ga va x_{2} uchun \frac{-15-\sqrt{393}}{2} ga bo‘ling.