b uchun yechish
\left\{\begin{matrix}b=-\frac{gm}{fx}\text{, }&x\neq 0\text{ and }f\neq 0\text{ and }m\neq 0\\b\in \mathrm{R}\text{, }&\left(x=0\text{ or }f=0\right)\text{ and }g=0\text{ and }m\neq 0\end{matrix}\right,
f uchun yechish
\left\{\begin{matrix}f=-\frac{gm}{bx}\text{, }&x\neq 0\text{ and }b\neq 0\text{ and }m\neq 0\\f\in \mathrm{R}\text{, }&\left(x=0\text{ or }b=0\right)\text{ and }g=0\text{ and }m\neq 0\end{matrix}\right,
Baham ko'rish
Klipbordga nusxa olish
\frac{\mathrm{d}}{\mathrm{d}x}(f)xm=\left(-\frac{b}{m}\right)fxm-gm
Tenglamaning ikkala tarafini m ga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(f)xm=\frac{-bf}{m}xm-gm
\left(-\frac{b}{m}\right)f ni yagona kasrga aylantiring.
\frac{\mathrm{d}}{\mathrm{d}x}(f)xm=\frac{-bfx}{m}m-gm
\frac{-bf}{m}x ni yagona kasrga aylantiring.
\frac{\mathrm{d}}{\mathrm{d}x}(f)xm=\frac{-bfxm}{m}-gm
\frac{-bfx}{m}m ni yagona kasrga aylantiring.
\frac{\mathrm{d}}{\mathrm{d}x}(f)xm=-bfx-gm
Surat va maxrajdagi ikkala m ni qisqartiring.
-bfx-gm=\frac{\mathrm{d}}{\mathrm{d}x}(f)xm
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-bfx=\frac{\mathrm{d}}{\mathrm{d}x}(f)xm+gm
gm ni ikki tarafga qo’shing.
\left(-fx\right)b=gm
Tenglama standart shaklda.
\frac{\left(-fx\right)b}{-fx}=\frac{gm}{-fx}
Ikki tarafini -fx ga bo‘ling.
b=\frac{gm}{-fx}
-fx ga bo'lish -fx ga ko'paytirishni bekor qiladi.
b=-\frac{gm}{fx}
gm ni -fx ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}