Asosiy tarkibga oʻtish
b uchun yechish
Tick mark Image
f uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\mathrm{d}}{\mathrm{d}x}(f)xm=\left(-\frac{b}{m}\right)fxm-gm
Tenglamaning ikkala tarafini m ga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(f)xm=\frac{-bf}{m}xm-gm
\left(-\frac{b}{m}\right)f ni yagona kasrga aylantiring.
\frac{\mathrm{d}}{\mathrm{d}x}(f)xm=\frac{-bfx}{m}m-gm
\frac{-bf}{m}x ni yagona kasrga aylantiring.
\frac{\mathrm{d}}{\mathrm{d}x}(f)xm=\frac{-bfxm}{m}-gm
\frac{-bfx}{m}m ni yagona kasrga aylantiring.
\frac{\mathrm{d}}{\mathrm{d}x}(f)xm=-bfx-gm
Surat va maxrajdagi ikkala m ni qisqartiring.
-bfx-gm=\frac{\mathrm{d}}{\mathrm{d}x}(f)xm
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-bfx=\frac{\mathrm{d}}{\mathrm{d}x}(f)xm+gm
gm ni ikki tarafga qo’shing.
\left(-fx\right)b=gm
Tenglama standart shaklda.
\frac{\left(-fx\right)b}{-fx}=\frac{gm}{-fx}
Ikki tarafini -fx ga bo‘ling.
b=\frac{gm}{-fx}
-fx ga bo'lish -fx ga ko'paytirishni bekor qiladi.
b=-\frac{gm}{fx}
gm ni -fx ga bo'lish.