Asosiy tarkibga oʻtish
a uchun yechish
Tick mark Image
f uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\mathrm{d}}{\mathrm{d}x}(f)xx=1-2axx+x\times 2-ax
Tenglamaning ikkala tarafini x ga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}=1-2axx+x\times 2-ax
x^{2} hosil qilish uchun x va x ni ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}=1-2ax^{2}+x\times 2-ax
x^{2} hosil qilish uchun x va x ni ko'paytirish.
1-2ax^{2}+x\times 2-ax=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-2ax^{2}+x\times 2-ax=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}-1
Ikkala tarafdan 1 ni ayirish.
-2ax^{2}-ax=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}-1-x\times 2
Ikkala tarafdan x\times 2 ni ayirish.
-2ax^{2}-ax=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}-1-2x
-2 hosil qilish uchun -1 va 2 ni ko'paytirish.
\left(-2x^{2}-x\right)a=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}-1-2x
a'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(-2x^{2}-x\right)a=-2x-1
Tenglama standart shaklda.
\frac{\left(-2x^{2}-x\right)a}{-2x^{2}-x}=\frac{-2x-1}{-2x^{2}-x}
Ikki tarafini -2x^{2}-x ga bo‘ling.
a=\frac{-2x-1}{-2x^{2}-x}
-2x^{2}-x ga bo'lish -2x^{2}-x ga ko'paytirishni bekor qiladi.
a=\frac{1}{x}
-1-2x ni -2x^{2}-x ga bo'lish.