x uchun yechish
x=\frac{e^{z}}{yz}
z\neq 0\text{ and }y\neq 0
y uchun yechish
y=\frac{e^{z}}{xz}
z\neq 0\text{ and }x\neq 0
Baham ko'rish
Klipbordga nusxa olish
-xyz=-e^{z}
Ikkala tarafdan e^{z} ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\left(-yz\right)x=-e^{z}
Tenglama standart shaklda.
\frac{\left(-yz\right)x}{-yz}=-\frac{e^{z}}{-yz}
Ikki tarafini -yz ga bo‘ling.
x=-\frac{e^{z}}{-yz}
-yz ga bo'lish -yz ga ko'paytirishni bekor qiladi.
x=\frac{e^{z}}{yz}
-e^{z} ni -yz ga bo'lish.
-xyz=-e^{z}
Ikkala tarafdan e^{z} ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\left(-xz\right)y=-e^{z}
Tenglama standart shaklda.
\frac{\left(-xz\right)y}{-xz}=-\frac{e^{z}}{-xz}
Ikki tarafini -xz ga bo‘ling.
y=-\frac{e^{z}}{-xz}
-xz ga bo'lish -xz ga ko'paytirishni bekor qiladi.
y=\frac{e^{z}}{xz}
-e^{z} ni -xz ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}