d y = \cos x / 3
d uchun yechish (complex solution)
\left\{\begin{matrix}d=\frac{\cos(x)}{3y}\text{, }&y\neq 0\\d\in \mathrm{C}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}+\frac{\pi }{2}\text{ and }y=0\end{matrix}\right,
d uchun yechish
\left\{\begin{matrix}d=\frac{\cos(x)}{3y}\text{, }&y\neq 0\\d\in \mathrm{R}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}+\frac{\pi }{2}\text{ and }y=0\end{matrix}\right,
x uchun yechish (complex solution)
x=-i\ln(\sqrt{9\left(dy\right)^{2}-1}+3dy)+2\pi n_{1}\text{, }n_{1}\in \mathrm{Z}
x=-i\ln(-\sqrt{9\left(dy\right)^{2}-1}+3dy)+2\pi n_{2}\text{, }n_{2}\in \mathrm{Z}
x uchun yechish
x=ArcCosI(3dy)+2\pi n_{1}\text{, }n_{1}\in \mathrm{Z}
x=\left(-1\right)\left(\left(-2\right)\pi n_{2}+ArcCosI(3dy)\right)\text{, }n_{2}\in \mathrm{Z}
Grafik
Viktorina
Trigonometry
d y = \cos x / 3
Baham ko'rish
Klipbordga nusxa olish
3dy=\cos(x)
Tenglamaning ikkala tarafini 3 ga ko'paytirish.
3yd=\cos(x)
Tenglama standart shaklda.
\frac{3yd}{3y}=\frac{\cos(x)}{3y}
Ikki tarafini 3y ga bo‘ling.
d=\frac{\cos(x)}{3y}
3y ga bo'lish 3y ga ko'paytirishni bekor qiladi.
3dy=\cos(x)
Tenglamaning ikkala tarafini 3 ga ko'paytirish.
3yd=\cos(x)
Tenglama standart shaklda.
\frac{3yd}{3y}=\frac{\cos(x)}{3y}
Ikki tarafini 3y ga bo‘ling.
d=\frac{\cos(x)}{3y}
3y ga bo'lish 3y ga ko'paytirishni bekor qiladi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}