d x _ { 13 } = \sqrt { ( 5 ) ^ { 2 } + ( - 12 ) ^ { 2 } }
d uchun yechish
d=\frac{13}{x_{13}}
x_{13}\neq 0
x_13 uchun yechish
x_{13}=\frac{13}{d}
d\neq 0
Viktorina
Linear Equation
5xshash muammolar:
d x _ { 13 } = \sqrt { ( 5 ) ^ { 2 } + ( - 12 ) ^ { 2 } }
Baham ko'rish
Klipbordga nusxa olish
dx_{13}=\sqrt{25+\left(-12\right)^{2}}
2 daraja ko‘rsatkichini 5 ga hisoblang va 25 ni qiymatni oling.
dx_{13}=\sqrt{25+144}
2 daraja ko‘rsatkichini -12 ga hisoblang va 144 ni qiymatni oling.
dx_{13}=\sqrt{169}
169 olish uchun 25 va 144'ni qo'shing.
dx_{13}=13
169 ning kvadrat ildizini hisoblab, 13 natijaga ega bo‘ling.
x_{13}d=13
Tenglama standart shaklda.
\frac{x_{13}d}{x_{13}}=\frac{13}{x_{13}}
Ikki tarafini x_{13} ga bo‘ling.
d=\frac{13}{x_{13}}
x_{13} ga bo'lish x_{13} ga ko'paytirishni bekor qiladi.
dx_{13}=\sqrt{25+\left(-12\right)^{2}}
2 daraja ko‘rsatkichini 5 ga hisoblang va 25 ni qiymatni oling.
dx_{13}=\sqrt{25+144}
2 daraja ko‘rsatkichini -12 ga hisoblang va 144 ni qiymatni oling.
dx_{13}=\sqrt{169}
169 olish uchun 25 va 144'ni qo'shing.
dx_{13}=13
169 ning kvadrat ildizini hisoblab, 13 natijaga ega bo‘ling.
\frac{dx_{13}}{d}=\frac{13}{d}
Ikki tarafini d ga bo‘ling.
x_{13}=\frac{13}{d}
d ga bo'lish d ga ko'paytirishni bekor qiladi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}