d x = \frac { 3 x ^ { 5 / 3 } } { 5 } + c
c uchun yechish
c=dx-\frac{3x^{\frac{5}{3}}}{5}
d uchun yechish
\left\{\begin{matrix}d=\frac{3x^{\frac{2}{3}}}{5}+\frac{c}{x}\text{, }&x\neq 0\\d\in \mathrm{R}\text{, }&x=0\text{ and }c=0\end{matrix}\right,
Grafik
Baham ko'rish
Klipbordga nusxa olish
5dx=3x^{\frac{5}{3}}+5c
Tenglamaning ikkala tarafini 5 ga ko'paytirish.
3x^{\frac{5}{3}}+5c=5dx
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
5c=5dx-3x^{\frac{5}{3}}
Ikkala tarafdan 3x^{\frac{5}{3}} ni ayirish.
\frac{5c}{5}=\frac{x\left(5d-3x^{\frac{2}{3}}\right)}{5}
Ikki tarafini 5 ga bo‘ling.
c=\frac{x\left(5d-3x^{\frac{2}{3}}\right)}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
c=dx-\frac{3x^{\frac{5}{3}}}{5}
x\left(5d-3x^{\frac{2}{3}}\right) ni 5 ga bo'lish.
5dx=3x^{\frac{5}{3}}+5c
Tenglamaning ikkala tarafini 5 ga ko'paytirish.
5xd=3x^{\frac{5}{3}}+5c
Tenglama standart shaklda.
\frac{5xd}{5x}=\frac{3x^{\frac{5}{3}}+5c}{5x}
Ikki tarafini 5x ga bo‘ling.
d=\frac{3x^{\frac{5}{3}}+5c}{5x}
5x ga bo'lish 5x ga ko'paytirishni bekor qiladi.
d=\frac{3x^{\frac{2}{3}}}{5}+\frac{c}{x}
3x^{\frac{5}{3}}+5c ni 5x ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}