d uchun yechish
d=\frac{\sqrt{41}+9}{20}\approx 0,770156212
d=\frac{9-\sqrt{41}}{20}\approx 0,129843788
Baham ko'rish
Klipbordga nusxa olish
10d^{2}-9d+1=0
d ga 10d-9 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
d=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 10}}{2\times 10}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 10 ni a, -9 ni b va 1 ni c bilan almashtiring.
d=\frac{-\left(-9\right)±\sqrt{81-4\times 10}}{2\times 10}
-9 kvadratini chiqarish.
d=\frac{-\left(-9\right)±\sqrt{81-40}}{2\times 10}
-4 ni 10 marotabaga ko'paytirish.
d=\frac{-\left(-9\right)±\sqrt{41}}{2\times 10}
81 ni -40 ga qo'shish.
d=\frac{9±\sqrt{41}}{2\times 10}
-9 ning teskarisi 9 ga teng.
d=\frac{9±\sqrt{41}}{20}
2 ni 10 marotabaga ko'paytirish.
d=\frac{\sqrt{41}+9}{20}
d=\frac{9±\sqrt{41}}{20} tenglamasini yeching, bunda ± musbat. 9 ni \sqrt{41} ga qo'shish.
d=\frac{9-\sqrt{41}}{20}
d=\frac{9±\sqrt{41}}{20} tenglamasini yeching, bunda ± manfiy. 9 dan \sqrt{41} ni ayirish.
d=\frac{\sqrt{41}+9}{20} d=\frac{9-\sqrt{41}}{20}
Tenglama yechildi.
10d^{2}-9d+1=0
d ga 10d-9 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
10d^{2}-9d=-1
Ikkala tarafdan 1 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{10d^{2}-9d}{10}=-\frac{1}{10}
Ikki tarafini 10 ga bo‘ling.
d^{2}-\frac{9}{10}d=-\frac{1}{10}
10 ga bo'lish 10 ga ko'paytirishni bekor qiladi.
d^{2}-\frac{9}{10}d+\left(-\frac{9}{20}\right)^{2}=-\frac{1}{10}+\left(-\frac{9}{20}\right)^{2}
-\frac{9}{10} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{9}{20} olish uchun. Keyin, -\frac{9}{20} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
d^{2}-\frac{9}{10}d+\frac{81}{400}=-\frac{1}{10}+\frac{81}{400}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{9}{20} kvadratini chiqarish.
d^{2}-\frac{9}{10}d+\frac{81}{400}=\frac{41}{400}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{1}{10} ni \frac{81}{400} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(d-\frac{9}{20}\right)^{2}=\frac{41}{400}
d^{2}-\frac{9}{10}d+\frac{81}{400} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(d-\frac{9}{20}\right)^{2}}=\sqrt{\frac{41}{400}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
d-\frac{9}{20}=\frac{\sqrt{41}}{20} d-\frac{9}{20}=-\frac{\sqrt{41}}{20}
Qisqartirish.
d=\frac{\sqrt{41}+9}{20} d=\frac{9-\sqrt{41}}{20}
\frac{9}{20} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}