c uchun yechish (complex solution)
\left\{\begin{matrix}c=\frac{9x}{t}\text{, }&t\neq 0\\c\in \mathrm{C}\text{, }&x=0\text{ and }t=0\end{matrix}\right,
t uchun yechish (complex solution)
\left\{\begin{matrix}t=\frac{9x}{c}\text{, }&c\neq 0\\t\in \mathrm{C}\text{, }&x=0\text{ and }c=0\end{matrix}\right,
c uchun yechish
\left\{\begin{matrix}c=\frac{9x}{t}\text{, }&t\neq 0\\c\in \mathrm{R}\text{, }&x=0\text{ and }t=0\end{matrix}\right,
t uchun yechish
\left\{\begin{matrix}t=\frac{9x}{c}\text{, }&c\neq 0\\t\in \mathrm{R}\text{, }&x=0\text{ and }c=0\end{matrix}\right,
Grafik
Baham ko'rish
Klipbordga nusxa olish
ct=9x
2 daraja ko‘rsatkichini 3 ga hisoblang va 9 ni qiymatni oling.
tc=9x
Tenglama standart shaklda.
\frac{tc}{t}=\frac{9x}{t}
Ikki tarafini t ga bo‘ling.
c=\frac{9x}{t}
t ga bo'lish t ga ko'paytirishni bekor qiladi.
ct=9x
2 daraja ko‘rsatkichini 3 ga hisoblang va 9 ni qiymatni oling.
\frac{ct}{c}=\frac{9x}{c}
Ikki tarafini c ga bo‘ling.
t=\frac{9x}{c}
c ga bo'lish c ga ko'paytirishni bekor qiladi.
ct=9x
2 daraja ko‘rsatkichini 3 ga hisoblang va 9 ni qiymatni oling.
tc=9x
Tenglama standart shaklda.
\frac{tc}{t}=\frac{9x}{t}
Ikki tarafini t ga bo‘ling.
c=\frac{9x}{t}
t ga bo'lish t ga ko'paytirishni bekor qiladi.
ct=9x
2 daraja ko‘rsatkichini 3 ga hisoblang va 9 ni qiymatni oling.
\frac{ct}{c}=\frac{9x}{c}
Ikki tarafini c ga bo‘ling.
t=\frac{9x}{c}
c ga bo'lish c ga ko'paytirishni bekor qiladi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}