Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

a+b=7 ab=1\times 12=12
Ifodani guruhlash orqali faktorlang. Avvalo, ifoda c^{2}+ac+bc+12 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,12 2,6 3,4
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b musbat boʻlganda, a va b ikkisi ham musbat. 12-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1+12=13 2+6=8 3+4=7
Har bir juftlik yigʻindisini hisoblang.
a=3 b=4
Yechim – 7 yigʻindisini beruvchi juftlik.
\left(c^{2}+3c\right)+\left(4c+12\right)
c^{2}+7c+12 ni \left(c^{2}+3c\right)+\left(4c+12\right) sifatida qaytadan yozish.
c\left(c+3\right)+4\left(c+3\right)
Birinchi guruhda c ni va ikkinchi guruhda 4 ni faktordan chiqaring.
\left(c+3\right)\left(c+4\right)
Distributiv funktsiyasidan foydalangan holda c+3 umumiy terminini chiqaring.
c^{2}+7c+12=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
c=\frac{-7±\sqrt{7^{2}-4\times 12}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
c=\frac{-7±\sqrt{49-4\times 12}}{2}
7 kvadratini chiqarish.
c=\frac{-7±\sqrt{49-48}}{2}
-4 ni 12 marotabaga ko'paytirish.
c=\frac{-7±\sqrt{1}}{2}
49 ni -48 ga qo'shish.
c=\frac{-7±1}{2}
1 ning kvadrat ildizini chiqarish.
c=-\frac{6}{2}
c=\frac{-7±1}{2} tenglamasini yeching, bunda ± musbat. -7 ni 1 ga qo'shish.
c=-3
-6 ni 2 ga bo'lish.
c=-\frac{8}{2}
c=\frac{-7±1}{2} tenglamasini yeching, bunda ± manfiy. -7 dan 1 ni ayirish.
c=-4
-8 ni 2 ga bo'lish.
c^{2}+7c+12=\left(c-\left(-3\right)\right)\left(c-\left(-4\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -3 ga va x_{2} uchun -4 ga bo‘ling.
c^{2}+7c+12=\left(c+3\right)\left(c+4\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.