Baholash
\frac{1}{b^{10}}
b ga nisbatan hosilani topish
-\frac{10}{b^{11}}
Viktorina
Polynomial
b ^ { 9 } \div b ^ { 19 }
Baham ko'rish
Klipbordga nusxa olish
\frac{b^{9}}{b^{19}}
Ifodani qisqartirish uchun eksponent qoidalaridan foydalanish.
b^{9-19}
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
b^{-10}
9 dan 19 ni ayirish.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{1}{1}b^{9-19})
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
\frac{\mathrm{d}}{\mathrm{d}b}(b^{-10})
Arifmetik hisobni amalga oshirish.
-10b^{-10-1}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
-10b^{-11}
Arifmetik hisobni amalga oshirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}