b uchun yechish
b=2+3i
b=2-3i
Baham ko'rish
Klipbordga nusxa olish
b^{2}-4b+13=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
b=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 13}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -4 ni b va 13 ni c bilan almashtiring.
b=\frac{-\left(-4\right)±\sqrt{16-4\times 13}}{2}
-4 kvadratini chiqarish.
b=\frac{-\left(-4\right)±\sqrt{16-52}}{2}
-4 ni 13 marotabaga ko'paytirish.
b=\frac{-\left(-4\right)±\sqrt{-36}}{2}
16 ni -52 ga qo'shish.
b=\frac{-\left(-4\right)±6i}{2}
-36 ning kvadrat ildizini chiqarish.
b=\frac{4±6i}{2}
-4 ning teskarisi 4 ga teng.
b=\frac{4+6i}{2}
b=\frac{4±6i}{2} tenglamasini yeching, bunda ± musbat. 4 ni 6i ga qo'shish.
b=2+3i
4+6i ni 2 ga bo'lish.
b=\frac{4-6i}{2}
b=\frac{4±6i}{2} tenglamasini yeching, bunda ± manfiy. 4 dan 6i ni ayirish.
b=2-3i
4-6i ni 2 ga bo'lish.
b=2+3i b=2-3i
Tenglama yechildi.
b^{2}-4b+13=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
b^{2}-4b+13-13=-13
Tenglamaning ikkala tarafidan 13 ni ayirish.
b^{2}-4b=-13
O‘zidan 13 ayirilsa 0 qoladi.
b^{2}-4b+\left(-2\right)^{2}=-13+\left(-2\right)^{2}
-4 ni bo‘lish, x shartining koeffitsienti, 2 ga -2 olish uchun. Keyin, -2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
b^{2}-4b+4=-13+4
-2 kvadratini chiqarish.
b^{2}-4b+4=-9
-13 ni 4 ga qo'shish.
\left(b-2\right)^{2}=-9
b^{2}-4b+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(b-2\right)^{2}}=\sqrt{-9}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
b-2=3i b-2=-3i
Qisqartirish.
b=2+3i b=2-3i
2 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}