x uchun yechish
x=-\frac{b^{2}}{10}+5
b uchun yechish (complex solution)
b=-\sqrt{50-10x}
b=\sqrt{50-10x}
b uchun yechish
b=\sqrt{50-10x}
b=-\sqrt{50-10x}\text{, }x\leq 5
Grafik
Baham ko'rish
Klipbordga nusxa olish
b^{2}-\left(25-10x+x^{2}\right)=5^{2}-x^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(5-x\right)^{2} kengaytirilishi uchun ishlating.
b^{2}-25+10x-x^{2}=5^{2}-x^{2}
25-10x+x^{2} teskarisini topish uchun har birining teskarisini toping.
b^{2}-25+10x-x^{2}=25-x^{2}
2 daraja ko‘rsatkichini 5 ga hisoblang va 25 ni qiymatni oling.
b^{2}-25+10x-x^{2}+x^{2}=25
x^{2} ni ikki tarafga qo’shing.
b^{2}-25+10x=25
0 ni olish uchun -x^{2} va x^{2} ni birlashtirish.
-25+10x=25-b^{2}
Ikkala tarafdan b^{2} ni ayirish.
10x=25-b^{2}+25
25 ni ikki tarafga qo’shing.
10x=50-b^{2}
50 olish uchun 25 va 25'ni qo'shing.
\frac{10x}{10}=\frac{50-b^{2}}{10}
Ikki tarafini 10 ga bo‘ling.
x=\frac{50-b^{2}}{10}
10 ga bo'lish 10 ga ko'paytirishni bekor qiladi.
x=-\frac{b^{2}}{10}+5
50-b^{2} ni 10 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}