b uchun yechish (complex solution)
b=\sqrt{6}-1\approx 1,449489743
b=-\left(\sqrt{6}+1\right)\approx -3,449489743
b uchun yechish
b=\sqrt{6}-1\approx 1,449489743
b=-\sqrt{6}-1\approx -3,449489743
Baham ko'rish
Klipbordga nusxa olish
b^{2}+2b-5=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
b=\frac{-2±\sqrt{2^{2}-4\left(-5\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 2 ni b va -5 ni c bilan almashtiring.
b=\frac{-2±\sqrt{4-4\left(-5\right)}}{2}
2 kvadratini chiqarish.
b=\frac{-2±\sqrt{4+20}}{2}
-4 ni -5 marotabaga ko'paytirish.
b=\frac{-2±\sqrt{24}}{2}
4 ni 20 ga qo'shish.
b=\frac{-2±2\sqrt{6}}{2}
24 ning kvadrat ildizini chiqarish.
b=\frac{2\sqrt{6}-2}{2}
b=\frac{-2±2\sqrt{6}}{2} tenglamasini yeching, bunda ± musbat. -2 ni 2\sqrt{6} ga qo'shish.
b=\sqrt{6}-1
-2+2\sqrt{6} ni 2 ga bo'lish.
b=\frac{-2\sqrt{6}-2}{2}
b=\frac{-2±2\sqrt{6}}{2} tenglamasini yeching, bunda ± manfiy. -2 dan 2\sqrt{6} ni ayirish.
b=-\sqrt{6}-1
-2-2\sqrt{6} ni 2 ga bo'lish.
b=\sqrt{6}-1 b=-\sqrt{6}-1
Tenglama yechildi.
b^{2}+2b-5=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
b^{2}+2b-5-\left(-5\right)=-\left(-5\right)
5 ni tenglamaning ikkala tarafiga qo'shish.
b^{2}+2b=-\left(-5\right)
O‘zidan -5 ayirilsa 0 qoladi.
b^{2}+2b=5
0 dan -5 ni ayirish.
b^{2}+2b+1^{2}=5+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
b^{2}+2b+1=5+1
1 kvadratini chiqarish.
b^{2}+2b+1=6
5 ni 1 ga qo'shish.
\left(b+1\right)^{2}=6
b^{2}+2b+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(b+1\right)^{2}}=\sqrt{6}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
b+1=\sqrt{6} b+1=-\sqrt{6}
Qisqartirish.
b=\sqrt{6}-1 b=-\sqrt{6}-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
b^{2}+2b-5=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
b=\frac{-2±\sqrt{2^{2}-4\left(-5\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 2 ni b va -5 ni c bilan almashtiring.
b=\frac{-2±\sqrt{4-4\left(-5\right)}}{2}
2 kvadratini chiqarish.
b=\frac{-2±\sqrt{4+20}}{2}
-4 ni -5 marotabaga ko'paytirish.
b=\frac{-2±\sqrt{24}}{2}
4 ni 20 ga qo'shish.
b=\frac{-2±2\sqrt{6}}{2}
24 ning kvadrat ildizini chiqarish.
b=\frac{2\sqrt{6}-2}{2}
b=\frac{-2±2\sqrt{6}}{2} tenglamasini yeching, bunda ± musbat. -2 ni 2\sqrt{6} ga qo'shish.
b=\sqrt{6}-1
-2+2\sqrt{6} ni 2 ga bo'lish.
b=\frac{-2\sqrt{6}-2}{2}
b=\frac{-2±2\sqrt{6}}{2} tenglamasini yeching, bunda ± manfiy. -2 dan 2\sqrt{6} ni ayirish.
b=-\sqrt{6}-1
-2-2\sqrt{6} ni 2 ga bo'lish.
b=\sqrt{6}-1 b=-\sqrt{6}-1
Tenglama yechildi.
b^{2}+2b-5=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
b^{2}+2b-5-\left(-5\right)=-\left(-5\right)
5 ni tenglamaning ikkala tarafiga qo'shish.
b^{2}+2b=-\left(-5\right)
O‘zidan -5 ayirilsa 0 qoladi.
b^{2}+2b=5
0 dan -5 ni ayirish.
b^{2}+2b+1^{2}=5+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
b^{2}+2b+1=5+1
1 kvadratini chiqarish.
b^{2}+2b+1=6
5 ni 1 ga qo'shish.
\left(b+1\right)^{2}=6
b^{2}+2b+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(b+1\right)^{2}}=\sqrt{6}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
b+1=\sqrt{6} b+1=-\sqrt{6}
Qisqartirish.
b=\sqrt{6}-1 b=-\sqrt{6}-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}