Asosiy tarkibga oʻtish
b uchun yechish (complex solution)
Tick mark Image
b uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

b^{2}+2b-5=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
b=\frac{-2±\sqrt{2^{2}-4\left(-5\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 2 ni b va -5 ni c bilan almashtiring.
b=\frac{-2±\sqrt{4-4\left(-5\right)}}{2}
2 kvadratini chiqarish.
b=\frac{-2±\sqrt{4+20}}{2}
-4 ni -5 marotabaga ko'paytirish.
b=\frac{-2±\sqrt{24}}{2}
4 ni 20 ga qo'shish.
b=\frac{-2±2\sqrt{6}}{2}
24 ning kvadrat ildizini chiqarish.
b=\frac{2\sqrt{6}-2}{2}
b=\frac{-2±2\sqrt{6}}{2} tenglamasini yeching, bunda ± musbat. -2 ni 2\sqrt{6} ga qo'shish.
b=\sqrt{6}-1
-2+2\sqrt{6} ni 2 ga bo'lish.
b=\frac{-2\sqrt{6}-2}{2}
b=\frac{-2±2\sqrt{6}}{2} tenglamasini yeching, bunda ± manfiy. -2 dan 2\sqrt{6} ni ayirish.
b=-\sqrt{6}-1
-2-2\sqrt{6} ni 2 ga bo'lish.
b=\sqrt{6}-1 b=-\sqrt{6}-1
Tenglama yechildi.
b^{2}+2b-5=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
b^{2}+2b-5-\left(-5\right)=-\left(-5\right)
5 ni tenglamaning ikkala tarafiga qo'shish.
b^{2}+2b=-\left(-5\right)
O‘zidan -5 ayirilsa 0 qoladi.
b^{2}+2b=5
0 dan -5 ni ayirish.
b^{2}+2b+1^{2}=5+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
b^{2}+2b+1=5+1
1 kvadratini chiqarish.
b^{2}+2b+1=6
5 ni 1 ga qo'shish.
\left(b+1\right)^{2}=6
b^{2}+2b+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(b+1\right)^{2}}=\sqrt{6}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
b+1=\sqrt{6} b+1=-\sqrt{6}
Qisqartirish.
b=\sqrt{6}-1 b=-\sqrt{6}-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
b^{2}+2b-5=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
b=\frac{-2±\sqrt{2^{2}-4\left(-5\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 2 ni b va -5 ni c bilan almashtiring.
b=\frac{-2±\sqrt{4-4\left(-5\right)}}{2}
2 kvadratini chiqarish.
b=\frac{-2±\sqrt{4+20}}{2}
-4 ni -5 marotabaga ko'paytirish.
b=\frac{-2±\sqrt{24}}{2}
4 ni 20 ga qo'shish.
b=\frac{-2±2\sqrt{6}}{2}
24 ning kvadrat ildizini chiqarish.
b=\frac{2\sqrt{6}-2}{2}
b=\frac{-2±2\sqrt{6}}{2} tenglamasini yeching, bunda ± musbat. -2 ni 2\sqrt{6} ga qo'shish.
b=\sqrt{6}-1
-2+2\sqrt{6} ni 2 ga bo'lish.
b=\frac{-2\sqrt{6}-2}{2}
b=\frac{-2±2\sqrt{6}}{2} tenglamasini yeching, bunda ± manfiy. -2 dan 2\sqrt{6} ni ayirish.
b=-\sqrt{6}-1
-2-2\sqrt{6} ni 2 ga bo'lish.
b=\sqrt{6}-1 b=-\sqrt{6}-1
Tenglama yechildi.
b^{2}+2b-5=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
b^{2}+2b-5-\left(-5\right)=-\left(-5\right)
5 ni tenglamaning ikkala tarafiga qo'shish.
b^{2}+2b=-\left(-5\right)
O‘zidan -5 ayirilsa 0 qoladi.
b^{2}+2b=5
0 dan -5 ni ayirish.
b^{2}+2b+1^{2}=5+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
b^{2}+2b+1=5+1
1 kvadratini chiqarish.
b^{2}+2b+1=6
5 ni 1 ga qo'shish.
\left(b+1\right)^{2}=6
b^{2}+2b+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(b+1\right)^{2}}=\sqrt{6}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
b+1=\sqrt{6} b+1=-\sqrt{6}
Qisqartirish.
b=\sqrt{6}-1 b=-\sqrt{6}-1
Tenglamaning ikkala tarafidan 1 ni ayirish.