b uchun yechish
b=6+2\sqrt{6}i\approx 6+4,898979486i
b=-2\sqrt{6}i+6\approx 6-4,898979486i
Baham ko'rish
Klipbordga nusxa olish
b^{2}+60-12b=0
12 ga 5-b ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
b^{2}-12b+60=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
b=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 60}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -12 ni b va 60 ni c bilan almashtiring.
b=\frac{-\left(-12\right)±\sqrt{144-4\times 60}}{2}
-12 kvadratini chiqarish.
b=\frac{-\left(-12\right)±\sqrt{144-240}}{2}
-4 ni 60 marotabaga ko'paytirish.
b=\frac{-\left(-12\right)±\sqrt{-96}}{2}
144 ni -240 ga qo'shish.
b=\frac{-\left(-12\right)±4\sqrt{6}i}{2}
-96 ning kvadrat ildizini chiqarish.
b=\frac{12±4\sqrt{6}i}{2}
-12 ning teskarisi 12 ga teng.
b=\frac{12+4\sqrt{6}i}{2}
b=\frac{12±4\sqrt{6}i}{2} tenglamasini yeching, bunda ± musbat. 12 ni 4i\sqrt{6} ga qo'shish.
b=6+2\sqrt{6}i
12+4i\sqrt{6} ni 2 ga bo'lish.
b=\frac{-4\sqrt{6}i+12}{2}
b=\frac{12±4\sqrt{6}i}{2} tenglamasini yeching, bunda ± manfiy. 12 dan 4i\sqrt{6} ni ayirish.
b=-2\sqrt{6}i+6
12-4i\sqrt{6} ni 2 ga bo'lish.
b=6+2\sqrt{6}i b=-2\sqrt{6}i+6
Tenglama yechildi.
b^{2}+60-12b=0
12 ga 5-b ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
b^{2}-12b=-60
Ikkala tarafdan 60 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
b^{2}-12b+\left(-6\right)^{2}=-60+\left(-6\right)^{2}
-12 ni bo‘lish, x shartining koeffitsienti, 2 ga -6 olish uchun. Keyin, -6 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
b^{2}-12b+36=-60+36
-6 kvadratini chiqarish.
b^{2}-12b+36=-24
-60 ni 36 ga qo'shish.
\left(b-6\right)^{2}=-24
b^{2}-12b+36 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(b-6\right)^{2}}=\sqrt{-24}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
b-6=2\sqrt{6}i b-6=-2\sqrt{6}i
Qisqartirish.
b=6+2\sqrt{6}i b=-2\sqrt{6}i+6
6 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}