b uchun yechish
b=-3
b=-1
Baham ko'rish
Klipbordga nusxa olish
b+1=-\frac{1}{2}\left(b^{2}+2b+1\right)
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(b+1\right)^{2} kengaytirilishi uchun ishlating.
b+1=-\frac{1}{2}b^{2}-b-\frac{1}{2}
-\frac{1}{2} ga b^{2}+2b+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
b+1+\frac{1}{2}b^{2}=-b-\frac{1}{2}
\frac{1}{2}b^{2} ni ikki tarafga qo’shing.
b+1+\frac{1}{2}b^{2}+b=-\frac{1}{2}
b ni ikki tarafga qo’shing.
2b+1+\frac{1}{2}b^{2}=-\frac{1}{2}
2b ni olish uchun b va b ni birlashtirish.
2b+1+\frac{1}{2}b^{2}+\frac{1}{2}=0
\frac{1}{2} ni ikki tarafga qo’shing.
2b+\frac{3}{2}+\frac{1}{2}b^{2}=0
\frac{3}{2} olish uchun 1 va \frac{1}{2}'ni qo'shing.
\frac{1}{2}b^{2}+2b+\frac{3}{2}=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
b=\frac{-2±\sqrt{2^{2}-4\times \frac{1}{2}\times \frac{3}{2}}}{2\times \frac{1}{2}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{1}{2} ni a, 2 ni b va \frac{3}{2} ni c bilan almashtiring.
b=\frac{-2±\sqrt{4-4\times \frac{1}{2}\times \frac{3}{2}}}{2\times \frac{1}{2}}
2 kvadratini chiqarish.
b=\frac{-2±\sqrt{4-2\times \frac{3}{2}}}{2\times \frac{1}{2}}
-4 ni \frac{1}{2} marotabaga ko'paytirish.
b=\frac{-2±\sqrt{4-3}}{2\times \frac{1}{2}}
-2 ni \frac{3}{2} marotabaga ko'paytirish.
b=\frac{-2±\sqrt{1}}{2\times \frac{1}{2}}
4 ni -3 ga qo'shish.
b=\frac{-2±1}{2\times \frac{1}{2}}
1 ning kvadrat ildizini chiqarish.
b=\frac{-2±1}{1}
2 ni \frac{1}{2} marotabaga ko'paytirish.
b=-\frac{1}{1}
b=\frac{-2±1}{1} tenglamasini yeching, bunda ± musbat. -2 ni 1 ga qo'shish.
b=-1
-1 ni 1 ga bo'lish.
b=-\frac{3}{1}
b=\frac{-2±1}{1} tenglamasini yeching, bunda ± manfiy. -2 dan 1 ni ayirish.
b=-3
-3 ni 1 ga bo'lish.
b=-1 b=-3
Tenglama yechildi.
b+1=-\frac{1}{2}\left(b^{2}+2b+1\right)
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(b+1\right)^{2} kengaytirilishi uchun ishlating.
b+1=-\frac{1}{2}b^{2}-b-\frac{1}{2}
-\frac{1}{2} ga b^{2}+2b+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
b+1+\frac{1}{2}b^{2}=-b-\frac{1}{2}
\frac{1}{2}b^{2} ni ikki tarafga qo’shing.
b+1+\frac{1}{2}b^{2}+b=-\frac{1}{2}
b ni ikki tarafga qo’shing.
2b+1+\frac{1}{2}b^{2}=-\frac{1}{2}
2b ni olish uchun b va b ni birlashtirish.
2b+\frac{1}{2}b^{2}=-\frac{1}{2}-1
Ikkala tarafdan 1 ni ayirish.
2b+\frac{1}{2}b^{2}=-\frac{3}{2}
-\frac{3}{2} olish uchun -\frac{1}{2} dan 1 ni ayirish.
\frac{1}{2}b^{2}+2b=-\frac{3}{2}
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{\frac{1}{2}b^{2}+2b}{\frac{1}{2}}=-\frac{\frac{3}{2}}{\frac{1}{2}}
Ikkala tarafini 2 ga ko‘paytiring.
b^{2}+\frac{2}{\frac{1}{2}}b=-\frac{\frac{3}{2}}{\frac{1}{2}}
\frac{1}{2} ga bo'lish \frac{1}{2} ga ko'paytirishni bekor qiladi.
b^{2}+4b=-\frac{\frac{3}{2}}{\frac{1}{2}}
2 ni \frac{1}{2} ga bo'lish 2 ga k'paytirish \frac{1}{2} ga qaytarish.
b^{2}+4b=-3
-\frac{3}{2} ni \frac{1}{2} ga bo'lish -\frac{3}{2} ga k'paytirish \frac{1}{2} ga qaytarish.
b^{2}+4b+2^{2}=-3+2^{2}
4 ni bo‘lish, x shartining koeffitsienti, 2 ga 2 olish uchun. Keyin, 2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
b^{2}+4b+4=-3+4
2 kvadratini chiqarish.
b^{2}+4b+4=1
-3 ni 4 ga qo'shish.
\left(b+2\right)^{2}=1
b^{2}+4b+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(b+2\right)^{2}}=\sqrt{1}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
b+2=1 b+2=-1
Qisqartirish.
b=-1 b=-3
Tenglamaning ikkala tarafidan 2 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}