x, y uchun yechish (complex solution)
\left\{\begin{matrix}x=-\frac{3\left(5b-4d\right)}{9-ab}\text{, }y=\frac{45-4ad}{9-ab}\text{, }&b=0\text{ or }a\neq \frac{9}{b}\\x\in \mathrm{C}\text{, }y=\frac{15-ax}{3}\text{, }&d=\frac{45}{4a}\text{ and }b=\frac{9}{a}\text{ and }a\neq 0\end{matrix}\right,
x, y uchun yechish
\left\{\begin{matrix}x=-\frac{3\left(5b-4d\right)}{9-ab}\text{, }y=\frac{45-4ad}{9-ab}\text{, }&b=0\text{ or }a\neq \frac{9}{b}\\x\in \mathrm{R}\text{, }y=\frac{15-ax}{3}\text{, }&d=\frac{45}{4a}\text{ and }b=\frac{9}{a}\text{ and }a\neq 0\end{matrix}\right,
Grafik
Baham ko'rish
Klipbordga nusxa olish
ax+3y=15,3x+by=4d
Almashtirishdan foydalanib tenglamalar juftligini yechish uchun, avval o'zgaruvchan qiymatlardan biri uchun tenglamani yeching. So'ngra ana shu o'zgaruvchan natijani boshqa tenglama bilan almashtiring.
ax+3y=15
Tenglamalardan birini tanlang va teng belgisining chap tomonidagi x ni izolyatsiyalash orqali x ni hisoblang.
ax=-3y+15
Tenglamaning ikkala tarafidan 3y ni ayirish.
x=\frac{1}{a}\left(-3y+15\right)
Ikki tarafini a ga bo‘ling.
x=\left(-\frac{3}{a}\right)y+\frac{15}{a}
\frac{1}{a} ni -3y+15 marotabaga ko'paytirish.
3\left(\left(-\frac{3}{a}\right)y+\frac{15}{a}\right)+by=4d
\frac{3\left(5-y\right)}{a} ni x uchun boshqa tenglamada almashtirish, 3x+by=4d.
\left(-\frac{9}{a}\right)y+\frac{45}{a}+by=4d
3 ni \frac{3\left(5-y\right)}{a} marotabaga ko'paytirish.
\left(b-\frac{9}{a}\right)y+\frac{45}{a}=4d
-\frac{9y}{a} ni by ga qo'shish.
\left(b-\frac{9}{a}\right)y=4d-\frac{45}{a}
Tenglamaning ikkala tarafidan \frac{45}{a} ni ayirish.
y=\frac{4ad-45}{ab-9}
Ikki tarafini b-\frac{9}{a} ga bo‘ling.
x=\left(-\frac{3}{a}\right)\times \frac{4ad-45}{ab-9}+\frac{15}{a}
\frac{4da-45}{ba-9} ni y uchun x=\left(-\frac{3}{a}\right)y+\frac{15}{a} da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x=-\frac{3\left(4ad-45\right)}{a\left(ab-9\right)}+\frac{15}{a}
-\frac{3}{a} ni \frac{4da-45}{ba-9} marotabaga ko'paytirish.
x=\frac{3\left(5b-4d\right)}{ab-9}
\frac{15}{a} ni -\frac{3\left(4da-45\right)}{a\left(ba-9\right)} ga qo'shish.
x=\frac{3\left(5b-4d\right)}{ab-9},y=\frac{4ad-45}{ab-9}
Tizim hal qilindi.
ax+3y=15,3x+by=4d
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}a&3\\3&b\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\4d\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}a&3\\3&b\end{matrix}\right))\left(\begin{matrix}a&3\\3&b\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}a&3\\3&b\end{matrix}\right))\left(\begin{matrix}15\\4d\end{matrix}\right)
\left(\begin{matrix}a&3\\3&b\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}a&3\\3&b\end{matrix}\right))\left(\begin{matrix}15\\4d\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}a&3\\3&b\end{matrix}\right))\left(\begin{matrix}15\\4d\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{b}{ab-3\times 3}&-\frac{3}{ab-3\times 3}\\-\frac{3}{ab-3\times 3}&\frac{a}{ab-3\times 3}\end{matrix}\right)\left(\begin{matrix}15\\4d\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{b}{ab-9}&-\frac{3}{ab-9}\\-\frac{3}{ab-9}&\frac{a}{ab-9}\end{matrix}\right)\left(\begin{matrix}15\\4d\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{b}{ab-9}\times 15+\left(-\frac{3}{ab-9}\right)\times 4d\\\left(-\frac{3}{ab-9}\right)\times 15+\frac{a}{ab-9}\times 4d\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3\left(5b-4d\right)}{ab-9}\\\frac{4ad-45}{ab-9}\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
x=\frac{3\left(5b-4d\right)}{ab-9},y=\frac{4ad-45}{ab-9}
x va y matritsa elementlarini chiqarib olish.
ax+3y=15,3x+by=4d
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
3ax+3\times 3y=3\times 15,a\times 3x+aby=a\times 4d
ax va 3x ni teng qilish uchun birinchi tenglamaning har bir tarafida barcha shartlarni 3 ga va ikkinchining har bir tarafidagi barcha shartlarni a ga ko'paytiring.
3ax+9y=45,3ax+aby=4ad
Qisqartirish.
3ax+\left(-3a\right)x+9y+\left(-ab\right)y=45-4ad
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali 3ax+9y=45 dan 3ax+aby=4ad ni ayirish.
9y+\left(-ab\right)y=45-4ad
3ax ni -3ax ga qo'shish. 3ax va -3ax shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
\left(9-ab\right)y=45-4ad
9y ni -aby ga qo'shish.
y=\frac{45-4ad}{9-ab}
Ikki tarafini 9-ab ga bo‘ling.
3x+b\times \frac{45-4ad}{9-ab}=4d
\frac{45-4ad}{9-ab} ni y uchun 3x+by=4d da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
3x+\frac{b\left(45-4ad\right)}{9-ab}=4d
b ni \frac{45-4ad}{9-ab} marotabaga ko'paytirish.
3x=\frac{9\left(4d-5b\right)}{9-ab}
Tenglamaning ikkala tarafidan \frac{b\left(45-4ad\right)}{9-ab} ni ayirish.
x=\frac{3\left(4d-5b\right)}{9-ab}
Ikki tarafini 3 ga bo‘ling.
x=\frac{3\left(4d-5b\right)}{9-ab},y=\frac{45-4ad}{9-ab}
Tizim hal qilindi.
ax+3y=15,3x+by=4d
Almashtirishdan foydalanib tenglamalar juftligini yechish uchun, avval o'zgaruvchan qiymatlardan biri uchun tenglamani yeching. So'ngra ana shu o'zgaruvchan natijani boshqa tenglama bilan almashtiring.
ax+3y=15
Tenglamalardan birini tanlang va teng belgisining chap tomonidagi x ni izolyatsiyalash orqali x ni hisoblang.
ax=-3y+15
Tenglamaning ikkala tarafidan 3y ni ayirish.
x=\frac{1}{a}\left(-3y+15\right)
Ikki tarafini a ga bo‘ling.
x=\left(-\frac{3}{a}\right)y+\frac{15}{a}
\frac{1}{a} ni -3y+15 marotabaga ko'paytirish.
3\left(\left(-\frac{3}{a}\right)y+\frac{15}{a}\right)+by=4d
\frac{3\left(5-y\right)}{a} ni x uchun boshqa tenglamada almashtirish, 3x+by=4d.
\left(-\frac{9}{a}\right)y+\frac{45}{a}+by=4d
3 ni \frac{3\left(5-y\right)}{a} marotabaga ko'paytirish.
\left(b-\frac{9}{a}\right)y+\frac{45}{a}=4d
-\frac{9y}{a} ni by ga qo'shish.
\left(b-\frac{9}{a}\right)y=4d-\frac{45}{a}
Tenglamaning ikkala tarafidan \frac{45}{a} ni ayirish.
y=\frac{4ad-45}{ab-9}
Ikki tarafini b-\frac{9}{a} ga bo‘ling.
x=\left(-\frac{3}{a}\right)\times \frac{4ad-45}{ab-9}+\frac{15}{a}
\frac{4da-45}{ba-9} ni y uchun x=\left(-\frac{3}{a}\right)y+\frac{15}{a} da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x=-\frac{3\left(4ad-45\right)}{a\left(ab-9\right)}+\frac{15}{a}
-\frac{3}{a} ni \frac{4da-45}{ba-9} marotabaga ko'paytirish.
x=\frac{3\left(5b-4d\right)}{ab-9}
\frac{15}{a} ni -\frac{3\left(4da-45\right)}{a\left(ba-9\right)} ga qo'shish.
x=\frac{3\left(5b-4d\right)}{ab-9},y=\frac{4ad-45}{ab-9}
Tizim hal qilindi.
ax+3y=15,3x+by=4d
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}a&3\\3&b\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\4d\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}a&3\\3&b\end{matrix}\right))\left(\begin{matrix}a&3\\3&b\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}a&3\\3&b\end{matrix}\right))\left(\begin{matrix}15\\4d\end{matrix}\right)
\left(\begin{matrix}a&3\\3&b\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}a&3\\3&b\end{matrix}\right))\left(\begin{matrix}15\\4d\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}a&3\\3&b\end{matrix}\right))\left(\begin{matrix}15\\4d\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{b}{ab-3\times 3}&-\frac{3}{ab-3\times 3}\\-\frac{3}{ab-3\times 3}&\frac{a}{ab-3\times 3}\end{matrix}\right)\left(\begin{matrix}15\\4d\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{b}{ab-9}&-\frac{3}{ab-9}\\-\frac{3}{ab-9}&\frac{a}{ab-9}\end{matrix}\right)\left(\begin{matrix}15\\4d\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{b}{ab-9}\times 15+\left(-\frac{3}{ab-9}\right)\times 4d\\\left(-\frac{3}{ab-9}\right)\times 15+\frac{a}{ab-9}\times 4d\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3\left(5b-4d\right)}{ab-9}\\\frac{4ad-45}{ab-9}\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
x=\frac{3\left(5b-4d\right)}{ab-9},y=\frac{4ad-45}{ab-9}
x va y matritsa elementlarini chiqarib olish.
ax+3y=15,3x+by=4d
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
3ax+3\times 3y=3\times 15,a\times 3x+aby=a\times 4d
ax va 3x ni teng qilish uchun birinchi tenglamaning har bir tarafida barcha shartlarni 3 ga va ikkinchining har bir tarafidagi barcha shartlarni a ga ko'paytiring.
3ax+9y=45,3ax+aby=4ad
Qisqartirish.
3ax+\left(-3a\right)x+9y+\left(-ab\right)y=45-4ad
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali 3ax+9y=45 dan 3ax+aby=4ad ni ayirish.
9y+\left(-ab\right)y=45-4ad
3ax ni -3ax ga qo'shish. 3ax va -3ax shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
\left(9-ab\right)y=45-4ad
9y ni -aby ga qo'shish.
y=\frac{45-4ad}{9-ab}
Ikki tarafini 9-ab ga bo‘ling.
3x+b\times \frac{45-4ad}{9-ab}=4d
\frac{45-4ad}{9-ab} ni y uchun 3x+by=4d da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
3x+\frac{b\left(45-4ad\right)}{9-ab}=4d
b ni \frac{45-4ad}{9-ab} marotabaga ko'paytirish.
3x=\frac{9\left(4d-5b\right)}{9-ab}
Tenglamaning ikkala tarafidan \frac{b\left(45-4ad\right)}{9-ab} ni ayirish.
x=\frac{3\left(4d-5b\right)}{9-ab}
Ikki tarafini 3 ga bo‘ling.
x=\frac{3\left(4d-5b\right)}{9-ab},y=\frac{45-4ad}{9-ab}
Tizim hal qilindi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}