a uchun yechish (complex solution)
\left\{\begin{matrix}\\a=0\text{, }&\text{unconditionally}\\a\in \mathrm{C}\text{, }&r_{1}=1-e\end{matrix}\right,
r_1 uchun yechish (complex solution)
\left\{\begin{matrix}\\r_{1}=1-e\text{, }&\text{unconditionally}\\r_{1}\in \mathrm{C}\text{, }&a=0\end{matrix}\right,
a uchun yechish
\left\{\begin{matrix}\\a=0\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&r_{1}=1-e\end{matrix}\right,
r_1 uchun yechish
\left\{\begin{matrix}\\r_{1}=1-e\text{, }&\text{unconditionally}\\r_{1}\in \mathrm{R}\text{, }&a=0\end{matrix}\right,
Baham ko'rish
Klipbordga nusxa olish
ar_{1}=a-ae
a ga 1-e ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
ar_{1}-a=-ae
Ikkala tarafdan a ni ayirish.
ar_{1}-a+ae=0
ae ni ikki tarafga qo’shing.
\left(r_{1}-1+e\right)a=0
a'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(r_{1}+e-1\right)a=0
Tenglama standart shaklda.
a=0
0 ni r_{1}-1+e ga bo'lish.
ar_{1}=a-ae
a ga 1-e ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
ar_{1}=a-ea
Tenglama standart shaklda.
\frac{ar_{1}}{a}=\frac{a-ea}{a}
Ikki tarafini a ga bo‘ling.
r_{1}=\frac{a-ea}{a}
a ga bo'lish a ga ko'paytirishni bekor qiladi.
r_{1}=1-e
a-ae ni a ga bo'lish.
ar_{1}=a-ae
a ga 1-e ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
ar_{1}-a=-ae
Ikkala tarafdan a ni ayirish.
ar_{1}-a+ae=0
ae ni ikki tarafga qo’shing.
\left(r_{1}-1+e\right)a=0
a'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(r_{1}+e-1\right)a=0
Tenglama standart shaklda.
a=0
0 ni r_{1}-1+e ga bo'lish.
ar_{1}=a-ae
a ga 1-e ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
ar_{1}=a-ea
Tenglama standart shaklda.
\frac{ar_{1}}{a}=\frac{a-ea}{a}
Ikki tarafini a ga bo‘ling.
r_{1}=\frac{a-ea}{a}
a ga bo'lish a ga ko'paytirishni bekor qiladi.
r_{1}=1-e
a-ae ni a ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}