a uchun yechish (complex solution)
\left\{\begin{matrix}a=-\frac{1-6n}{h}\text{, }&h\neq 0\\a\in \mathrm{C}\text{, }&n=\frac{1}{6}\text{ and }h=0\end{matrix}\right,
h uchun yechish (complex solution)
\left\{\begin{matrix}h=-\frac{1-6n}{a}\text{, }&a\neq 0\\h\in \mathrm{C}\text{, }&n=\frac{1}{6}\text{ and }a=0\end{matrix}\right,
a uchun yechish
\left\{\begin{matrix}a=-\frac{1-6n}{h}\text{, }&h\neq 0\\a\in \mathrm{R}\text{, }&n=\frac{1}{6}\text{ and }h=0\end{matrix}\right,
h uchun yechish
\left\{\begin{matrix}h=-\frac{1-6n}{a}\text{, }&a\neq 0\\h\in \mathrm{R}\text{, }&n=\frac{1}{6}\text{ and }a=0\end{matrix}\right,
Baham ko'rish
Klipbordga nusxa olish
ha=6n-1
Tenglama standart shaklda.
\frac{ha}{h}=\frac{6n-1}{h}
Ikki tarafini h ga bo‘ling.
a=\frac{6n-1}{h}
h ga bo'lish h ga ko'paytirishni bekor qiladi.
ah=6n-1
Tenglama standart shaklda.
\frac{ah}{a}=\frac{6n-1}{a}
Ikki tarafini a ga bo‘ling.
h=\frac{6n-1}{a}
a ga bo'lish a ga ko'paytirishni bekor qiladi.
ha=6n-1
Tenglama standart shaklda.
\frac{ha}{h}=\frac{6n-1}{h}
Ikki tarafini h ga bo‘ling.
a=\frac{6n-1}{h}
h ga bo'lish h ga ko'paytirishni bekor qiladi.
ah=6n-1
Tenglama standart shaklda.
\frac{ah}{a}=\frac{6n-1}{a}
Ikki tarafini a ga bo‘ling.
h=\frac{6n-1}{a}
a ga bo'lish a ga ko'paytirishni bekor qiladi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}