n uchun yechish
n=-\frac{2a_{n}-1}{a_{n}-2}
a_{n}\neq 2
a_n uchun yechish
a_{n}=\frac{2n+1}{n+2}
n\neq -2
Baham ko'rish
Klipbordga nusxa olish
a_{n}\left(n+2\right)=2n+1
n qiymati -2 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini n+2 ga ko'paytirish.
a_{n}n+2a_{n}=2n+1
a_{n} ga n+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
a_{n}n+2a_{n}-2n=1
Ikkala tarafdan 2n ni ayirish.
a_{n}n-2n=1-2a_{n}
Ikkala tarafdan 2a_{n} ni ayirish.
\left(a_{n}-2\right)n=1-2a_{n}
n'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(a_{n}-2\right)n}{a_{n}-2}=\frac{1-2a_{n}}{a_{n}-2}
Ikki tarafini a_{n}-2 ga bo‘ling.
n=\frac{1-2a_{n}}{a_{n}-2}
a_{n}-2 ga bo'lish a_{n}-2 ga ko'paytirishni bekor qiladi.
n=\frac{1-2a_{n}}{a_{n}-2}\text{, }n\neq -2
n qiymati -2 teng bo‘lmaydi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}