Asosiy tarkibga oʻtish
a, m uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

a-m=5,a+m+5=12
Almashtirishdan foydalanib tenglamalar juftligini yechish uchun, avval o'zgaruvchan qiymatlardan biri uchun tenglamani yeching. So'ngra ana shu o'zgaruvchan natijani boshqa tenglama bilan almashtiring.
a-m=5
Tenglamalardan birini tanlang va teng belgisining chap tomonidagi a ni izolyatsiyalash orqali a ni hisoblang.
a=m+5
m ni tenglamaning ikkala tarafiga qo'shish.
m+5+m+5=12
m+5 ni a uchun boshqa tenglamada almashtirish, a+m+5=12.
2m+5+5=12
m ni m ga qo'shish.
2m+10=12
5 ni 5 ga qo'shish.
2m=2
Tenglamaning ikkala tarafidan 10 ni ayirish.
m=1
Ikki tarafini 2 ga bo‘ling.
a=1+5
1 ni m uchun a=m+5 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz a ni bevosita yecha olasiz.
a=6
5 ni 1 ga qo'shish.
a=6,m=1
Tizim hal qilindi.
a-m=5,a+m+5=12
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}a\\m\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}a\\m\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\m\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}a\\m\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}a\\m\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{-1}{1-\left(-1\right)}\\-\frac{1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}a\\m\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}a\\m\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 5+\frac{1}{2}\times 7\\-\frac{1}{2}\times 5+\frac{1}{2}\times 7\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}a\\m\end{matrix}\right)=\left(\begin{matrix}6\\1\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
a=6,m=1
a va m matritsa elementlarini chiqarib olish.
a-m=5,a+m+5=12
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
a-a-m-m-5=5-12
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali a-m=5 dan a+m+5=12 ni ayirish.
-m-m-5=5-12
a ni -a ga qo'shish. a va -a shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
-2m-5=5-12
-m ni -m ga qo'shish.
-2m-5=-7
5 ni -12 ga qo'shish.
-2m=-2
5 ni tenglamaning ikkala tarafiga qo'shish.
m=1
Ikki tarafini -2 ga bo‘ling.
a+1+5=12
1 ni m uchun a+m+5=12 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz a ni bevosita yecha olasiz.
a+6=12
1 ni 5 ga qo'shish.
a=6
Tenglamaning ikkala tarafidan 6 ni ayirish.
a=6,m=1
Tizim hal qilindi.