Omil
\left(a-1\right)\left(a+1\right)\left(a^{2}+1\right)\left(b^{4}+1\right)
Baholash
\left(a^{4}-1\right)\left(b^{4}+1\right)
Baham ko'rish
Klipbordga nusxa olish
a^{4}\left(b^{4}+1\right)-\left(b^{4}+1\right)
a^{4}-b^{4}+a^{4}b^{4}-1=\left(a^{4}b^{4}+a^{4}\right)+\left(-b^{4}-1\right) misolini guruhlang hamda a^{4} ni birinchi va -1 ni ikkinchi guruhdan ajrating.
\left(b^{4}+1\right)\left(a^{4}-1\right)
Distributiv funktsiyasidan foydalangan holda b^{4}+1 umumiy terminini chiqaring.
\left(a^{2}-1\right)\left(a^{2}+1\right)
Hisoblang: a^{4}-1. a^{4}-1 ni \left(a^{2}\right)^{2}-1^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a-1\right)\left(a+1\right)
Hisoblang: a^{2}-1. a^{2}-1 ni a^{2}-1^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a-1\right)\left(a+1\right)\left(a^{2}+1\right)\left(b^{4}+1\right)
Toʻliq ajratilgan ifodani qaytadan yozing. Quyidagi koʻphadlar faktorlanmagan, ularda hech qanday ratsional ildizlar topilmadi: a^{2}+1,b^{4}+1.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}