Asosiy tarkibga oʻtish
a uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

a^{2}-68a+225=0
Tengsizlikni yechish uchun chap tomon faktorini hisoblang. Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
a=\frac{-\left(-68\right)±\sqrt{\left(-68\right)^{2}-4\times 1\times 225}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun 1 ni, b uchun -68 ni va c uchun 225 ni ayiring.
a=\frac{68±14\sqrt{19}}{2}
Hisoblarni amalga oshiring.
a=7\sqrt{19}+34 a=34-7\sqrt{19}
a=\frac{68±14\sqrt{19}}{2} tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
\left(a-\left(7\sqrt{19}+34\right)\right)\left(a-\left(34-7\sqrt{19}\right)\right)\leq 0
Yechimlardan foydalanib tengsizlikni qaytadan yozing.
a-\left(7\sqrt{19}+34\right)\geq 0 a-\left(34-7\sqrt{19}\right)\leq 0
Koʻpaytma ≤0 boʻlishi uchun qiymatlardan biri a-\left(7\sqrt{19}+34\right) va a-\left(34-7\sqrt{19}\right) ≥0 va boshqasi ≤0 boʻlishi kerak. a-\left(7\sqrt{19}+34\right)\geq 0 va a-\left(34-7\sqrt{19}\right)\leq 0 boʻlgandagi holatni koʻrib chiqing.
a\in \emptyset
Bu har qanday a uchun xato.
a-\left(34-7\sqrt{19}\right)\geq 0 a-\left(7\sqrt{19}+34\right)\leq 0
a-\left(7\sqrt{19}+34\right)\leq 0 va a-\left(34-7\sqrt{19}\right)\geq 0 boʻlgandagi holatni koʻrib chiqing.
a\in \begin{bmatrix}34-7\sqrt{19},7\sqrt{19}+34\end{bmatrix}
Ikkala tengsizlikning mos yechimi – a\in \left[34-7\sqrt{19},7\sqrt{19}+34\right].
a\in \begin{bmatrix}34-7\sqrt{19},7\sqrt{19}+34\end{bmatrix}
Oxirgi yechim olingan yechimlarning birlashmasidir.