a uchun yechish
a=\sqrt{31}+3\approx 8,567764363
a=3-\sqrt{31}\approx -2,567764363
Baham ko'rish
Klipbordga nusxa olish
a^{2}-6a-22=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
a=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-22\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -6 ni b va -22 ni c bilan almashtiring.
a=\frac{-\left(-6\right)±\sqrt{36-4\left(-22\right)}}{2}
-6 kvadratini chiqarish.
a=\frac{-\left(-6\right)±\sqrt{36+88}}{2}
-4 ni -22 marotabaga ko'paytirish.
a=\frac{-\left(-6\right)±\sqrt{124}}{2}
36 ni 88 ga qo'shish.
a=\frac{-\left(-6\right)±2\sqrt{31}}{2}
124 ning kvadrat ildizini chiqarish.
a=\frac{6±2\sqrt{31}}{2}
-6 ning teskarisi 6 ga teng.
a=\frac{2\sqrt{31}+6}{2}
a=\frac{6±2\sqrt{31}}{2} tenglamasini yeching, bunda ± musbat. 6 ni 2\sqrt{31} ga qo'shish.
a=\sqrt{31}+3
6+2\sqrt{31} ni 2 ga bo'lish.
a=\frac{6-2\sqrt{31}}{2}
a=\frac{6±2\sqrt{31}}{2} tenglamasini yeching, bunda ± manfiy. 6 dan 2\sqrt{31} ni ayirish.
a=3-\sqrt{31}
6-2\sqrt{31} ni 2 ga bo'lish.
a=\sqrt{31}+3 a=3-\sqrt{31}
Tenglama yechildi.
a^{2}-6a-22=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
a^{2}-6a-22-\left(-22\right)=-\left(-22\right)
22 ni tenglamaning ikkala tarafiga qo'shish.
a^{2}-6a=-\left(-22\right)
O‘zidan -22 ayirilsa 0 qoladi.
a^{2}-6a=22
0 dan -22 ni ayirish.
a^{2}-6a+\left(-3\right)^{2}=22+\left(-3\right)^{2}
-6 ni bo‘lish, x shartining koeffitsienti, 2 ga -3 olish uchun. Keyin, -3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
a^{2}-6a+9=22+9
-3 kvadratini chiqarish.
a^{2}-6a+9=31
22 ni 9 ga qo'shish.
\left(a-3\right)^{2}=31
a^{2}-6a+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(a-3\right)^{2}}=\sqrt{31}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
a-3=\sqrt{31} a-3=-\sqrt{31}
Qisqartirish.
a=\sqrt{31}+3 a=3-\sqrt{31}
3 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}