Asosiy tarkibga oʻtish
a uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

a^{2}-4a-46=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
a=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-46\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -4 ni b va -46 ni c bilan almashtiring.
a=\frac{-\left(-4\right)±\sqrt{16-4\left(-46\right)}}{2}
-4 kvadratini chiqarish.
a=\frac{-\left(-4\right)±\sqrt{16+184}}{2}
-4 ni -46 marotabaga ko'paytirish.
a=\frac{-\left(-4\right)±\sqrt{200}}{2}
16 ni 184 ga qo'shish.
a=\frac{-\left(-4\right)±10\sqrt{2}}{2}
200 ning kvadrat ildizini chiqarish.
a=\frac{4±10\sqrt{2}}{2}
-4 ning teskarisi 4 ga teng.
a=\frac{10\sqrt{2}+4}{2}
a=\frac{4±10\sqrt{2}}{2} tenglamasini yeching, bunda ± musbat. 4 ni 10\sqrt{2} ga qo'shish.
a=5\sqrt{2}+2
4+10\sqrt{2} ni 2 ga bo'lish.
a=\frac{4-10\sqrt{2}}{2}
a=\frac{4±10\sqrt{2}}{2} tenglamasini yeching, bunda ± manfiy. 4 dan 10\sqrt{2} ni ayirish.
a=2-5\sqrt{2}
4-10\sqrt{2} ni 2 ga bo'lish.
a=5\sqrt{2}+2 a=2-5\sqrt{2}
Tenglama yechildi.
a^{2}-4a-46=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
a^{2}-4a-46-\left(-46\right)=-\left(-46\right)
46 ni tenglamaning ikkala tarafiga qo'shish.
a^{2}-4a=-\left(-46\right)
O‘zidan -46 ayirilsa 0 qoladi.
a^{2}-4a=46
0 dan -46 ni ayirish.
a^{2}-4a+\left(-2\right)^{2}=46+\left(-2\right)^{2}
-4 ni bo‘lish, x shartining koeffitsienti, 2 ga -2 olish uchun. Keyin, -2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
a^{2}-4a+4=46+4
-2 kvadratini chiqarish.
a^{2}-4a+4=50
46 ni 4 ga qo'shish.
\left(a-2\right)^{2}=50
a^{2}-4a+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(a-2\right)^{2}}=\sqrt{50}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
a-2=5\sqrt{2} a-2=-5\sqrt{2}
Qisqartirish.
a=5\sqrt{2}+2 a=2-5\sqrt{2}
2 ni tenglamaning ikkala tarafiga qo'shish.