Asosiy tarkibga oʻtish
a uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

a\left(a-3\right)=0
a omili.
a=0 a=3
Tenglamani yechish uchun a=0 va a-3=0 ni yeching.
a^{2}-3a=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
a=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -3 ni b va 0 ni c bilan almashtiring.
a=\frac{-\left(-3\right)±3}{2}
\left(-3\right)^{2} ning kvadrat ildizini chiqarish.
a=\frac{3±3}{2}
-3 ning teskarisi 3 ga teng.
a=\frac{6}{2}
a=\frac{3±3}{2} tenglamasini yeching, bunda ± musbat. 3 ni 3 ga qo'shish.
a=3
6 ni 2 ga bo'lish.
a=\frac{0}{2}
a=\frac{3±3}{2} tenglamasini yeching, bunda ± manfiy. 3 dan 3 ni ayirish.
a=0
0 ni 2 ga bo'lish.
a=3 a=0
Tenglama yechildi.
a^{2}-3a=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
a^{2}-3a+\left(-\frac{3}{2}\right)^{2}=\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
a^{2}-3a+\frac{9}{4}=\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
\left(a-\frac{3}{2}\right)^{2}=\frac{9}{4}
a^{2}-3a+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(a-\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
a-\frac{3}{2}=\frac{3}{2} a-\frac{3}{2}=-\frac{3}{2}
Qisqartirish.
a=3 a=0
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.