Asosiy tarkibga oʻtish
a uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

a^{2}-2a-30=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
a=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-30\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -2 ni b va -30 ni c bilan almashtiring.
a=\frac{-\left(-2\right)±\sqrt{4-4\left(-30\right)}}{2}
-2 kvadratini chiqarish.
a=\frac{-\left(-2\right)±\sqrt{4+120}}{2}
-4 ni -30 marotabaga ko'paytirish.
a=\frac{-\left(-2\right)±\sqrt{124}}{2}
4 ni 120 ga qo'shish.
a=\frac{-\left(-2\right)±2\sqrt{31}}{2}
124 ning kvadrat ildizini chiqarish.
a=\frac{2±2\sqrt{31}}{2}
-2 ning teskarisi 2 ga teng.
a=\frac{2\sqrt{31}+2}{2}
a=\frac{2±2\sqrt{31}}{2} tenglamasini yeching, bunda ± musbat. 2 ni 2\sqrt{31} ga qo'shish.
a=\sqrt{31}+1
2+2\sqrt{31} ni 2 ga bo'lish.
a=\frac{2-2\sqrt{31}}{2}
a=\frac{2±2\sqrt{31}}{2} tenglamasini yeching, bunda ± manfiy. 2 dan 2\sqrt{31} ni ayirish.
a=1-\sqrt{31}
2-2\sqrt{31} ni 2 ga bo'lish.
a=\sqrt{31}+1 a=1-\sqrt{31}
Tenglama yechildi.
a^{2}-2a-30=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
a^{2}-2a-30-\left(-30\right)=-\left(-30\right)
30 ni tenglamaning ikkala tarafiga qo'shish.
a^{2}-2a=-\left(-30\right)
O‘zidan -30 ayirilsa 0 qoladi.
a^{2}-2a=30
0 dan -30 ni ayirish.
a^{2}-2a+1=30+1
-2 ni bo‘lish, x shartining koeffitsienti, 2 ga -1 olish uchun. Keyin, -1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
a^{2}-2a+1=31
30 ni 1 ga qo'shish.
\left(a-1\right)^{2}=31
a^{2}-2a+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(a-1\right)^{2}}=\sqrt{31}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
a-1=\sqrt{31} a-1=-\sqrt{31}
Qisqartirish.
a=\sqrt{31}+1 a=1-\sqrt{31}
1 ni tenglamaning ikkala tarafiga qo'shish.