Asosiy tarkibga oʻtish
a uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

a^{2}-10a=4
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
a^{2}-10a-4=4-4
Tenglamaning ikkala tarafidan 4 ni ayirish.
a^{2}-10a-4=0
O‘zidan 4 ayirilsa 0 qoladi.
a=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-4\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -10 ni b va -4 ni c bilan almashtiring.
a=\frac{-\left(-10\right)±\sqrt{100-4\left(-4\right)}}{2}
-10 kvadratini chiqarish.
a=\frac{-\left(-10\right)±\sqrt{100+16}}{2}
-4 ni -4 marotabaga ko'paytirish.
a=\frac{-\left(-10\right)±\sqrt{116}}{2}
100 ni 16 ga qo'shish.
a=\frac{-\left(-10\right)±2\sqrt{29}}{2}
116 ning kvadrat ildizini chiqarish.
a=\frac{10±2\sqrt{29}}{2}
-10 ning teskarisi 10 ga teng.
a=\frac{2\sqrt{29}+10}{2}
a=\frac{10±2\sqrt{29}}{2} tenglamasini yeching, bunda ± musbat. 10 ni 2\sqrt{29} ga qo'shish.
a=\sqrt{29}+5
10+2\sqrt{29} ni 2 ga bo'lish.
a=\frac{10-2\sqrt{29}}{2}
a=\frac{10±2\sqrt{29}}{2} tenglamasini yeching, bunda ± manfiy. 10 dan 2\sqrt{29} ni ayirish.
a=5-\sqrt{29}
10-2\sqrt{29} ni 2 ga bo'lish.
a=\sqrt{29}+5 a=5-\sqrt{29}
Tenglama yechildi.
a^{2}-10a=4
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
a^{2}-10a+\left(-5\right)^{2}=4+\left(-5\right)^{2}
-10 ni bo‘lish, x shartining koeffitsienti, 2 ga -5 olish uchun. Keyin, -5 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
a^{2}-10a+25=4+25
-5 kvadratini chiqarish.
a^{2}-10a+25=29
4 ni 25 ga qo'shish.
\left(a-5\right)^{2}=29
a^{2}-10a+25 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(a-5\right)^{2}}=\sqrt{29}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
a-5=\sqrt{29} a-5=-\sqrt{29}
Qisqartirish.
a=\sqrt{29}+5 a=5-\sqrt{29}
5 ni tenglamaning ikkala tarafiga qo'shish.