Asosiy tarkibga oʻtish
a uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(a-1\right)\left(a+1\right)=0
Hisoblang: a^{2}-1. a^{2}-1 ni a^{2}-1^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
a=1 a=-1
Tenglamani yechish uchun a-1=0 va a+1=0 ni yeching.
a^{2}=1
1 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
a=1 a=-1
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
a^{2}-1=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
a=\frac{0±\sqrt{0^{2}-4\left(-1\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -1 ni c bilan almashtiring.
a=\frac{0±\sqrt{-4\left(-1\right)}}{2}
0 kvadratini chiqarish.
a=\frac{0±\sqrt{4}}{2}
-4 ni -1 marotabaga ko'paytirish.
a=\frac{0±2}{2}
4 ning kvadrat ildizini chiqarish.
a=1
a=\frac{0±2}{2} tenglamasini yeching, bunda ± musbat. 2 ni 2 ga bo'lish.
a=-1
a=\frac{0±2}{2} tenglamasini yeching, bunda ± manfiy. -2 ni 2 ga bo'lish.
a=1 a=-1
Tenglama yechildi.