a uchun yechish
a=4
a=0
Baham ko'rish
Klipbordga nusxa olish
a^{2}-4a=0
Ikkala tarafdan 4a ni ayirish.
a\left(a-4\right)=0
a omili.
a=0 a=4
Tenglamani yechish uchun a=0 va a-4=0 ni yeching.
a^{2}-4a=0
Ikkala tarafdan 4a ni ayirish.
a=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -4 ni b va 0 ni c bilan almashtiring.
a=\frac{-\left(-4\right)±4}{2}
\left(-4\right)^{2} ning kvadrat ildizini chiqarish.
a=\frac{4±4}{2}
-4 ning teskarisi 4 ga teng.
a=\frac{8}{2}
a=\frac{4±4}{2} tenglamasini yeching, bunda ± musbat. 4 ni 4 ga qo'shish.
a=4
8 ni 2 ga bo'lish.
a=\frac{0}{2}
a=\frac{4±4}{2} tenglamasini yeching, bunda ± manfiy. 4 dan 4 ni ayirish.
a=0
0 ni 2 ga bo'lish.
a=4 a=0
Tenglama yechildi.
a^{2}-4a=0
Ikkala tarafdan 4a ni ayirish.
a^{2}-4a+\left(-2\right)^{2}=\left(-2\right)^{2}
-4 ni bo‘lish, x shartining koeffitsienti, 2 ga -2 olish uchun. Keyin, -2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
a^{2}-4a+4=4
-2 kvadratini chiqarish.
\left(a-2\right)^{2}=4
a^{2}-4a+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(a-2\right)^{2}}=\sqrt{4}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
a-2=2 a-2=-2
Qisqartirish.
a=4 a=0
2 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}