a uchun yechish
a = \frac{\sqrt{21} - 1}{2} \approx 1,791287847
a=\frac{-\sqrt{21}-1}{2}\approx -2,791287847
Baham ko'rish
Klipbordga nusxa olish
a^{2}+a-5=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
a=\frac{-1±\sqrt{1^{2}-4\left(-5\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 1 ni b va -5 ni c bilan almashtiring.
a=\frac{-1±\sqrt{1-4\left(-5\right)}}{2}
1 kvadratini chiqarish.
a=\frac{-1±\sqrt{1+20}}{2}
-4 ni -5 marotabaga ko'paytirish.
a=\frac{-1±\sqrt{21}}{2}
1 ni 20 ga qo'shish.
a=\frac{\sqrt{21}-1}{2}
a=\frac{-1±\sqrt{21}}{2} tenglamasini yeching, bunda ± musbat. -1 ni \sqrt{21} ga qo'shish.
a=\frac{-\sqrt{21}-1}{2}
a=\frac{-1±\sqrt{21}}{2} tenglamasini yeching, bunda ± manfiy. -1 dan \sqrt{21} ni ayirish.
a=\frac{\sqrt{21}-1}{2} a=\frac{-\sqrt{21}-1}{2}
Tenglama yechildi.
a^{2}+a-5=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
a^{2}+a-5-\left(-5\right)=-\left(-5\right)
5 ni tenglamaning ikkala tarafiga qo'shish.
a^{2}+a=-\left(-5\right)
O‘zidan -5 ayirilsa 0 qoladi.
a^{2}+a=5
0 dan -5 ni ayirish.
a^{2}+a+\left(\frac{1}{2}\right)^{2}=5+\left(\frac{1}{2}\right)^{2}
1 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{2} olish uchun. Keyin, \frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
a^{2}+a+\frac{1}{4}=5+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{2} kvadratini chiqarish.
a^{2}+a+\frac{1}{4}=\frac{21}{4}
5 ni \frac{1}{4} ga qo'shish.
\left(a+\frac{1}{2}\right)^{2}=\frac{21}{4}
a^{2}+a+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(a+\frac{1}{2}\right)^{2}}=\sqrt{\frac{21}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
a+\frac{1}{2}=\frac{\sqrt{21}}{2} a+\frac{1}{2}=-\frac{\sqrt{21}}{2}
Qisqartirish.
a=\frac{\sqrt{21}-1}{2} a=\frac{-\sqrt{21}-1}{2}
Tenglamaning ikkala tarafidan \frac{1}{2} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}