Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

a\left(a+1\right)
a omili.
a^{2}+a=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
a=\frac{-1±\sqrt{1^{2}}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
a=\frac{-1±1}{2}
1^{2} ning kvadrat ildizini chiqarish.
a=\frac{0}{2}
a=\frac{-1±1}{2} tenglamasini yeching, bunda ± musbat. -1 ni 1 ga qo'shish.
a=0
0 ni 2 ga bo'lish.
a=-\frac{2}{2}
a=\frac{-1±1}{2} tenglamasini yeching, bunda ± manfiy. -1 dan 1 ni ayirish.
a=-1
-2 ni 2 ga bo'lish.
a^{2}+a=a\left(a-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 0 ga va x_{2} uchun -1 ga bo‘ling.
a^{2}+a=a\left(a+1\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.