a uchun yechish (complex solution)
a=\sqrt{103}-4\approx 6,148891565
a=-\left(\sqrt{103}+4\right)\approx -14,148891565
a uchun yechish
a=\sqrt{103}-4\approx 6,148891565
a=-\sqrt{103}-4\approx -14,148891565
Baham ko'rish
Klipbordga nusxa olish
a^{2}+8a+9=96
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
a^{2}+8a+9-96=96-96
Tenglamaning ikkala tarafidan 96 ni ayirish.
a^{2}+8a+9-96=0
O‘zidan 96 ayirilsa 0 qoladi.
a^{2}+8a-87=0
9 dan 96 ni ayirish.
a=\frac{-8±\sqrt{8^{2}-4\left(-87\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 8 ni b va -87 ni c bilan almashtiring.
a=\frac{-8±\sqrt{64-4\left(-87\right)}}{2}
8 kvadratini chiqarish.
a=\frac{-8±\sqrt{64+348}}{2}
-4 ni -87 marotabaga ko'paytirish.
a=\frac{-8±\sqrt{412}}{2}
64 ni 348 ga qo'shish.
a=\frac{-8±2\sqrt{103}}{2}
412 ning kvadrat ildizini chiqarish.
a=\frac{2\sqrt{103}-8}{2}
a=\frac{-8±2\sqrt{103}}{2} tenglamasini yeching, bunda ± musbat. -8 ni 2\sqrt{103} ga qo'shish.
a=\sqrt{103}-4
-8+2\sqrt{103} ni 2 ga bo'lish.
a=\frac{-2\sqrt{103}-8}{2}
a=\frac{-8±2\sqrt{103}}{2} tenglamasini yeching, bunda ± manfiy. -8 dan 2\sqrt{103} ni ayirish.
a=-\sqrt{103}-4
-8-2\sqrt{103} ni 2 ga bo'lish.
a=\sqrt{103}-4 a=-\sqrt{103}-4
Tenglama yechildi.
a^{2}+8a+9=96
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
a^{2}+8a+9-9=96-9
Tenglamaning ikkala tarafidan 9 ni ayirish.
a^{2}+8a=96-9
O‘zidan 9 ayirilsa 0 qoladi.
a^{2}+8a=87
96 dan 9 ni ayirish.
a^{2}+8a+4^{2}=87+4^{2}
8 ni bo‘lish, x shartining koeffitsienti, 2 ga 4 olish uchun. Keyin, 4 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
a^{2}+8a+16=87+16
4 kvadratini chiqarish.
a^{2}+8a+16=103
87 ni 16 ga qo'shish.
\left(a+4\right)^{2}=103
a^{2}+8a+16 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(a+4\right)^{2}}=\sqrt{103}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
a+4=\sqrt{103} a+4=-\sqrt{103}
Qisqartirish.
a=\sqrt{103}-4 a=-\sqrt{103}-4
Tenglamaning ikkala tarafidan 4 ni ayirish.
a^{2}+8a+9=96
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
a^{2}+8a+9-96=96-96
Tenglamaning ikkala tarafidan 96 ni ayirish.
a^{2}+8a+9-96=0
O‘zidan 96 ayirilsa 0 qoladi.
a^{2}+8a-87=0
9 dan 96 ni ayirish.
a=\frac{-8±\sqrt{8^{2}-4\left(-87\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 8 ni b va -87 ni c bilan almashtiring.
a=\frac{-8±\sqrt{64-4\left(-87\right)}}{2}
8 kvadratini chiqarish.
a=\frac{-8±\sqrt{64+348}}{2}
-4 ni -87 marotabaga ko'paytirish.
a=\frac{-8±\sqrt{412}}{2}
64 ni 348 ga qo'shish.
a=\frac{-8±2\sqrt{103}}{2}
412 ning kvadrat ildizini chiqarish.
a=\frac{2\sqrt{103}-8}{2}
a=\frac{-8±2\sqrt{103}}{2} tenglamasini yeching, bunda ± musbat. -8 ni 2\sqrt{103} ga qo'shish.
a=\sqrt{103}-4
-8+2\sqrt{103} ni 2 ga bo'lish.
a=\frac{-2\sqrt{103}-8}{2}
a=\frac{-8±2\sqrt{103}}{2} tenglamasini yeching, bunda ± manfiy. -8 dan 2\sqrt{103} ni ayirish.
a=-\sqrt{103}-4
-8-2\sqrt{103} ni 2 ga bo'lish.
a=\sqrt{103}-4 a=-\sqrt{103}-4
Tenglama yechildi.
a^{2}+8a+9=96
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
a^{2}+8a+9-9=96-9
Tenglamaning ikkala tarafidan 9 ni ayirish.
a^{2}+8a=96-9
O‘zidan 9 ayirilsa 0 qoladi.
a^{2}+8a=87
96 dan 9 ni ayirish.
a^{2}+8a+4^{2}=87+4^{2}
8 ni bo‘lish, x shartining koeffitsienti, 2 ga 4 olish uchun. Keyin, 4 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
a^{2}+8a+16=87+16
4 kvadratini chiqarish.
a^{2}+8a+16=103
87 ni 16 ga qo'shish.
\left(a+4\right)^{2}=103
a^{2}+8a+16 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(a+4\right)^{2}}=\sqrt{103}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
a+4=\sqrt{103} a+4=-\sqrt{103}
Qisqartirish.
a=\sqrt{103}-4 a=-\sqrt{103}-4
Tenglamaning ikkala tarafidan 4 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}