Asosiy tarkibga oʻtish
a uchun yechish (complex solution)
Tick mark Image
a uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

a^{2}+8a+9=96
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
a^{2}+8a+9-96=96-96
Tenglamaning ikkala tarafidan 96 ni ayirish.
a^{2}+8a+9-96=0
O‘zidan 96 ayirilsa 0 qoladi.
a^{2}+8a-87=0
9 dan 96 ni ayirish.
a=\frac{-8±\sqrt{8^{2}-4\left(-87\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 8 ni b va -87 ni c bilan almashtiring.
a=\frac{-8±\sqrt{64-4\left(-87\right)}}{2}
8 kvadratini chiqarish.
a=\frac{-8±\sqrt{64+348}}{2}
-4 ni -87 marotabaga ko'paytirish.
a=\frac{-8±\sqrt{412}}{2}
64 ni 348 ga qo'shish.
a=\frac{-8±2\sqrt{103}}{2}
412 ning kvadrat ildizini chiqarish.
a=\frac{2\sqrt{103}-8}{2}
a=\frac{-8±2\sqrt{103}}{2} tenglamasini yeching, bunda ± musbat. -8 ni 2\sqrt{103} ga qo'shish.
a=\sqrt{103}-4
-8+2\sqrt{103} ni 2 ga bo'lish.
a=\frac{-2\sqrt{103}-8}{2}
a=\frac{-8±2\sqrt{103}}{2} tenglamasini yeching, bunda ± manfiy. -8 dan 2\sqrt{103} ni ayirish.
a=-\sqrt{103}-4
-8-2\sqrt{103} ni 2 ga bo'lish.
a=\sqrt{103}-4 a=-\sqrt{103}-4
Tenglama yechildi.
a^{2}+8a+9=96
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
a^{2}+8a+9-9=96-9
Tenglamaning ikkala tarafidan 9 ni ayirish.
a^{2}+8a=96-9
O‘zidan 9 ayirilsa 0 qoladi.
a^{2}+8a=87
96 dan 9 ni ayirish.
a^{2}+8a+4^{2}=87+4^{2}
8 ni bo‘lish, x shartining koeffitsienti, 2 ga 4 olish uchun. Keyin, 4 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
a^{2}+8a+16=87+16
4 kvadratini chiqarish.
a^{2}+8a+16=103
87 ni 16 ga qo'shish.
\left(a+4\right)^{2}=103
a^{2}+8a+16 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(a+4\right)^{2}}=\sqrt{103}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
a+4=\sqrt{103} a+4=-\sqrt{103}
Qisqartirish.
a=\sqrt{103}-4 a=-\sqrt{103}-4
Tenglamaning ikkala tarafidan 4 ni ayirish.
a^{2}+8a+9=96
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
a^{2}+8a+9-96=96-96
Tenglamaning ikkala tarafidan 96 ni ayirish.
a^{2}+8a+9-96=0
O‘zidan 96 ayirilsa 0 qoladi.
a^{2}+8a-87=0
9 dan 96 ni ayirish.
a=\frac{-8±\sqrt{8^{2}-4\left(-87\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 8 ni b va -87 ni c bilan almashtiring.
a=\frac{-8±\sqrt{64-4\left(-87\right)}}{2}
8 kvadratini chiqarish.
a=\frac{-8±\sqrt{64+348}}{2}
-4 ni -87 marotabaga ko'paytirish.
a=\frac{-8±\sqrt{412}}{2}
64 ni 348 ga qo'shish.
a=\frac{-8±2\sqrt{103}}{2}
412 ning kvadrat ildizini chiqarish.
a=\frac{2\sqrt{103}-8}{2}
a=\frac{-8±2\sqrt{103}}{2} tenglamasini yeching, bunda ± musbat. -8 ni 2\sqrt{103} ga qo'shish.
a=\sqrt{103}-4
-8+2\sqrt{103} ni 2 ga bo'lish.
a=\frac{-2\sqrt{103}-8}{2}
a=\frac{-8±2\sqrt{103}}{2} tenglamasini yeching, bunda ± manfiy. -8 dan 2\sqrt{103} ni ayirish.
a=-\sqrt{103}-4
-8-2\sqrt{103} ni 2 ga bo'lish.
a=\sqrt{103}-4 a=-\sqrt{103}-4
Tenglama yechildi.
a^{2}+8a+9=96
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
a^{2}+8a+9-9=96-9
Tenglamaning ikkala tarafidan 9 ni ayirish.
a^{2}+8a=96-9
O‘zidan 9 ayirilsa 0 qoladi.
a^{2}+8a=87
96 dan 9 ni ayirish.
a^{2}+8a+4^{2}=87+4^{2}
8 ni bo‘lish, x shartining koeffitsienti, 2 ga 4 olish uchun. Keyin, 4 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
a^{2}+8a+16=87+16
4 kvadratini chiqarish.
a^{2}+8a+16=103
87 ni 16 ga qo'shish.
\left(a+4\right)^{2}=103
a^{2}+8a+16 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(a+4\right)^{2}}=\sqrt{103}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
a+4=\sqrt{103} a+4=-\sqrt{103}
Qisqartirish.
a=\sqrt{103}-4 a=-\sqrt{103}-4
Tenglamaning ikkala tarafidan 4 ni ayirish.