Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

a^{2}+4a-54=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
a=\frac{-4±\sqrt{4^{2}-4\left(-54\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
a=\frac{-4±\sqrt{16-4\left(-54\right)}}{2}
4 kvadratini chiqarish.
a=\frac{-4±\sqrt{16+216}}{2}
-4 ni -54 marotabaga ko'paytirish.
a=\frac{-4±\sqrt{232}}{2}
16 ni 216 ga qo'shish.
a=\frac{-4±2\sqrt{58}}{2}
232 ning kvadrat ildizini chiqarish.
a=\frac{2\sqrt{58}-4}{2}
a=\frac{-4±2\sqrt{58}}{2} tenglamasini yeching, bunda ± musbat. -4 ni 2\sqrt{58} ga qo'shish.
a=\sqrt{58}-2
-4+2\sqrt{58} ni 2 ga bo'lish.
a=\frac{-2\sqrt{58}-4}{2}
a=\frac{-4±2\sqrt{58}}{2} tenglamasini yeching, bunda ± manfiy. -4 dan 2\sqrt{58} ni ayirish.
a=-\sqrt{58}-2
-4-2\sqrt{58} ni 2 ga bo'lish.
a^{2}+4a-54=\left(a-\left(\sqrt{58}-2\right)\right)\left(a-\left(-\sqrt{58}-2\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -2+\sqrt{58} ga va x_{2} uchun -2-\sqrt{58} ga bo‘ling.