a uchun yechish
a=-\frac{1}{5}+\frac{2}{5}i=-0,2+0,4i
a=-\frac{1}{5}-\frac{2}{5}i=-0,2-0,4i
Baham ko'rish
Klipbordga nusxa olish
5a^{2}+2a+1=0
5a^{2} ni olish uchun a^{2} va 4a^{2} ni birlashtirish.
a=\frac{-2±\sqrt{2^{2}-4\times 5}}{2\times 5}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 5 ni a, 2 ni b va 1 ni c bilan almashtiring.
a=\frac{-2±\sqrt{4-4\times 5}}{2\times 5}
2 kvadratini chiqarish.
a=\frac{-2±\sqrt{4-20}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
a=\frac{-2±\sqrt{-16}}{2\times 5}
4 ni -20 ga qo'shish.
a=\frac{-2±4i}{2\times 5}
-16 ning kvadrat ildizini chiqarish.
a=\frac{-2±4i}{10}
2 ni 5 marotabaga ko'paytirish.
a=\frac{-2+4i}{10}
a=\frac{-2±4i}{10} tenglamasini yeching, bunda ± musbat. -2 ni 4i ga qo'shish.
a=-\frac{1}{5}+\frac{2}{5}i
-2+4i ni 10 ga bo'lish.
a=\frac{-2-4i}{10}
a=\frac{-2±4i}{10} tenglamasini yeching, bunda ± manfiy. -2 dan 4i ni ayirish.
a=-\frac{1}{5}-\frac{2}{5}i
-2-4i ni 10 ga bo'lish.
a=-\frac{1}{5}+\frac{2}{5}i a=-\frac{1}{5}-\frac{2}{5}i
Tenglama yechildi.
5a^{2}+2a+1=0
5a^{2} ni olish uchun a^{2} va 4a^{2} ni birlashtirish.
5a^{2}+2a=-1
Ikkala tarafdan 1 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{5a^{2}+2a}{5}=-\frac{1}{5}
Ikki tarafini 5 ga bo‘ling.
a^{2}+\frac{2}{5}a=-\frac{1}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
a^{2}+\frac{2}{5}a+\left(\frac{1}{5}\right)^{2}=-\frac{1}{5}+\left(\frac{1}{5}\right)^{2}
\frac{2}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{5} olish uchun. Keyin, \frac{1}{5} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
a^{2}+\frac{2}{5}a+\frac{1}{25}=-\frac{1}{5}+\frac{1}{25}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{5} kvadratini chiqarish.
a^{2}+\frac{2}{5}a+\frac{1}{25}=-\frac{4}{25}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{1}{5} ni \frac{1}{25} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(a+\frac{1}{5}\right)^{2}=-\frac{4}{25}
a^{2}+\frac{2}{5}a+\frac{1}{25} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(a+\frac{1}{5}\right)^{2}}=\sqrt{-\frac{4}{25}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
a+\frac{1}{5}=\frac{2}{5}i a+\frac{1}{5}=-\frac{2}{5}i
Qisqartirish.
a=-\frac{1}{5}+\frac{2}{5}i a=-\frac{1}{5}-\frac{2}{5}i
Tenglamaning ikkala tarafidan \frac{1}{5} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}