Asosiy tarkibga oʻtish
a uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

a^{2}+84=\left(2+\sqrt{80-a^{2}}\right)^{2}
84 olish uchun 4 va 80'ni qo'shing.
a^{2}+84=4+4\sqrt{80-a^{2}}+\left(\sqrt{80-a^{2}}\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2+\sqrt{80-a^{2}}\right)^{2} kengaytirilishi uchun ishlating.
a^{2}+84=4+4\sqrt{80-a^{2}}+80-a^{2}
2 daraja ko‘rsatkichini \sqrt{80-a^{2}} ga hisoblang va 80-a^{2} ni qiymatni oling.
a^{2}+84=84+4\sqrt{80-a^{2}}-a^{2}
84 olish uchun 4 va 80'ni qo'shing.
a^{2}+84-4\sqrt{80-a^{2}}=84-a^{2}
Ikkala tarafdan 4\sqrt{80-a^{2}} ni ayirish.
a^{2}+84-4\sqrt{80-a^{2}}+a^{2}=84
a^{2} ni ikki tarafga qo’shing.
2a^{2}+84-4\sqrt{80-a^{2}}=84
2a^{2} ni olish uchun a^{2} va a^{2} ni birlashtirish.
-4\sqrt{80-a^{2}}=84-\left(2a^{2}+84\right)
Tenglamaning ikkala tarafidan 2a^{2}+84 ni ayirish.
-4\sqrt{80-a^{2}}=84-2a^{2}-84
2a^{2}+84 teskarisini topish uchun har birining teskarisini toping.
-4\sqrt{80-a^{2}}=-2a^{2}
0 olish uchun 84 dan 84 ni ayirish.
\left(-4\sqrt{80-a^{2}}\right)^{2}=\left(-2a^{2}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
\left(-4\right)^{2}\left(\sqrt{80-a^{2}}\right)^{2}=\left(-2a^{2}\right)^{2}
\left(-4\sqrt{80-a^{2}}\right)^{2} ni kengaytirish.
16\left(\sqrt{80-a^{2}}\right)^{2}=\left(-2a^{2}\right)^{2}
2 daraja ko‘rsatkichini -4 ga hisoblang va 16 ni qiymatni oling.
16\left(80-a^{2}\right)=\left(-2a^{2}\right)^{2}
2 daraja ko‘rsatkichini \sqrt{80-a^{2}} ga hisoblang va 80-a^{2} ni qiymatni oling.
1280-16a^{2}=\left(-2a^{2}\right)^{2}
16 ga 80-a^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
1280-16a^{2}=\left(-2\right)^{2}\left(a^{2}\right)^{2}
\left(-2a^{2}\right)^{2} ni kengaytirish.
1280-16a^{2}=\left(-2\right)^{2}a^{4}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
1280-16a^{2}=4a^{4}
2 daraja ko‘rsatkichini -2 ga hisoblang va 4 ni qiymatni oling.
1280-16a^{2}-4a^{4}=0
Ikkala tarafdan 4a^{4} ni ayirish.
-4t^{2}-16t+1280=0
a^{2} uchun t ni almashtiring.
t=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\left(-4\right)\times 1280}}{-4\times 2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun -4 ni, b uchun -16 ni va c uchun 1280 ni ayiring.
t=\frac{16±144}{-8}
Hisoblarni amalga oshiring.
t=-20 t=16
t=\frac{16±144}{-8} tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
a=4 a=-4
a=t^{2} boʻlganda, yechimlar musbat t uchun a=±\sqrt{t} hisoblanishi orqali olinadi.
4^{2}+4+80=\left(2+\sqrt{80-4^{2}}\right)^{2}
a^{2}+4+80=\left(2+\sqrt{80-a^{2}}\right)^{2} tenglamasida a uchun 4 ni almashtiring.
100=100
Qisqartirish. a=4 tenglamani qoniqtiradi.
\left(-4\right)^{2}+4+80=\left(2+\sqrt{80-\left(-4\right)^{2}}\right)^{2}
a^{2}+4+80=\left(2+\sqrt{80-a^{2}}\right)^{2} tenglamasida a uchun -4 ni almashtiring.
100=100
Qisqartirish. a=-4 tenglamani qoniqtiradi.
a=4 a=-4
-4\sqrt{80-a^{2}}=-2a^{2} boʻyicha barcha yechimlar roʻyxati.