a uchun yechish
a\in \left(-\infty,\frac{-\sqrt{249}-3}{2}\right)\cup \left(\frac{\sqrt{249}-3}{2},\infty\right)
Baham ko'rish
Klipbordga nusxa olish
a^{2}+3a-60=0
Tengsizlikni yechish uchun chap tomon faktorini hisoblang. Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
a=\frac{-3±\sqrt{3^{2}-4\times 1\left(-60\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun 1 ni, b uchun 3 ni va c uchun -60 ni ayiring.
a=\frac{-3±\sqrt{249}}{2}
Hisoblarni amalga oshiring.
a=\frac{\sqrt{249}-3}{2} a=\frac{-\sqrt{249}-3}{2}
a=\frac{-3±\sqrt{249}}{2} tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
\left(a-\frac{\sqrt{249}-3}{2}\right)\left(a-\frac{-\sqrt{249}-3}{2}\right)>0
Yechimlardan foydalanib tengsizlikni qaytadan yozing.
a-\frac{\sqrt{249}-3}{2}<0 a-\frac{-\sqrt{249}-3}{2}<0
Koʻpaytma musbat boʻlishi uchun a-\frac{\sqrt{249}-3}{2} va a-\frac{-\sqrt{249}-3}{2} ikkalasi yo manfiy, yo musbat boʻlishi kerak. a-\frac{\sqrt{249}-3}{2} va a-\frac{-\sqrt{249}-3}{2} ikkalasi manfiy boʻlganda, yechimini toping.
a<\frac{-\sqrt{249}-3}{2}
Ikkala tengsizlikning mos yechimi – a<\frac{-\sqrt{249}-3}{2}.
a-\frac{-\sqrt{249}-3}{2}>0 a-\frac{\sqrt{249}-3}{2}>0
a-\frac{\sqrt{249}-3}{2} va a-\frac{-\sqrt{249}-3}{2} ikkalasi musbat boʻlganda, yechimini toping.
a>\frac{\sqrt{249}-3}{2}
Ikkala tengsizlikning mos yechimi – a>\frac{\sqrt{249}-3}{2}.
a<\frac{-\sqrt{249}-3}{2}\text{; }a>\frac{\sqrt{249}-3}{2}
Oxirgi yechim olingan yechimlarning birlashmasidir.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}