a uchun yechish
a=-\sqrt{843}\approx -29,034462282
a=\sqrt{843}\approx 29,034462282
Baham ko'rish
Klipbordga nusxa olish
a^{2}+2\left(-1\right)=29^{2}
2 daraja ko‘rsatkichini i ga hisoblang va -1 ni qiymatni oling.
a^{2}-2=29^{2}
-2 hosil qilish uchun 2 va -1 ni ko'paytirish.
a^{2}-2=841
2 daraja ko‘rsatkichini 29 ga hisoblang va 841 ni qiymatni oling.
a^{2}=841+2
2 ni ikki tarafga qo’shing.
a^{2}=843
843 olish uchun 841 va 2'ni qo'shing.
a=\sqrt{843} a=-\sqrt{843}
Tenglama yechildi.
a^{2}+2\left(-1\right)=29^{2}
2 daraja ko‘rsatkichini i ga hisoblang va -1 ni qiymatni oling.
a^{2}-2=29^{2}
-2 hosil qilish uchun 2 va -1 ni ko'paytirish.
a^{2}-2=841
2 daraja ko‘rsatkichini 29 ga hisoblang va 841 ni qiymatni oling.
a^{2}-2-841=0
Ikkala tarafdan 841 ni ayirish.
a^{2}-843=0
-843 olish uchun -2 dan 841 ni ayirish.
a=\frac{0±\sqrt{0^{2}-4\left(-843\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -843 ni c bilan almashtiring.
a=\frac{0±\sqrt{-4\left(-843\right)}}{2}
0 kvadratini chiqarish.
a=\frac{0±\sqrt{3372}}{2}
-4 ni -843 marotabaga ko'paytirish.
a=\frac{0±2\sqrt{843}}{2}
3372 ning kvadrat ildizini chiqarish.
a=\sqrt{843}
a=\frac{0±2\sqrt{843}}{2} tenglamasini yeching, bunda ± musbat.
a=-\sqrt{843}
a=\frac{0±2\sqrt{843}}{2} tenglamasini yeching, bunda ± manfiy.
a=\sqrt{843} a=-\sqrt{843}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}