Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

a^{2}+12a+4=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
a=\frac{-12±\sqrt{12^{2}-4\times 4}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
a=\frac{-12±\sqrt{144-4\times 4}}{2}
12 kvadratini chiqarish.
a=\frac{-12±\sqrt{144-16}}{2}
-4 ni 4 marotabaga ko'paytirish.
a=\frac{-12±\sqrt{128}}{2}
144 ni -16 ga qo'shish.
a=\frac{-12±8\sqrt{2}}{2}
128 ning kvadrat ildizini chiqarish.
a=\frac{8\sqrt{2}-12}{2}
a=\frac{-12±8\sqrt{2}}{2} tenglamasini yeching, bunda ± musbat. -12 ni 8\sqrt{2} ga qo'shish.
a=4\sqrt{2}-6
-12+8\sqrt{2} ni 2 ga bo'lish.
a=\frac{-8\sqrt{2}-12}{2}
a=\frac{-12±8\sqrt{2}}{2} tenglamasini yeching, bunda ± manfiy. -12 dan 8\sqrt{2} ni ayirish.
a=-4\sqrt{2}-6
-12-8\sqrt{2} ni 2 ga bo'lish.
a^{2}+12a+4=\left(a-\left(4\sqrt{2}-6\right)\right)\left(a-\left(-4\sqrt{2}-6\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -6+4\sqrt{2} ga va x_{2} uchun -6-4\sqrt{2} ga bo‘ling.