f uchun yechish
\left\{\begin{matrix}f=\frac{az_{t}+v_{1}}{u}\text{, }&u\neq 0\text{ and }z_{t}\neq 0\\f\in \mathrm{R}\text{, }&v_{1}=-az_{t}\text{ and }u=0\text{ and }z_{t}\neq 0\end{matrix}\right,
a uchun yechish
a=-\frac{v_{1}-fu}{z_{t}}
z_{t}\neq 0
Baham ko'rish
Klipbordga nusxa olish
az_{t}=uf-v_{1}
Tenglamaning ikkala tarafini z_{t} ga ko'paytirish.
uf-v_{1}=az_{t}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
uf=az_{t}+v_{1}
v_{1} ni ikki tarafga qo’shing.
\frac{uf}{u}=\frac{az_{t}+v_{1}}{u}
Ikki tarafini u ga bo‘ling.
f=\frac{az_{t}+v_{1}}{u}
u ga bo'lish u ga ko'paytirishni bekor qiladi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}