Asosiy tarkibga oʻtish
a uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{a}{12,604}=\frac{2}{1+\sqrt{5}}
1 ni \frac{1+\sqrt{5}}{2} ga bo'lish 1 ga k'paytirish \frac{1+\sqrt{5}}{2} ga qaytarish.
\frac{a}{12,604}=\frac{2\left(1-\sqrt{5}\right)}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}
\frac{2}{1+\sqrt{5}} maxrajini 1-\sqrt{5} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{a}{12,604}=\frac{2\left(1-\sqrt{5}\right)}{1^{2}-\left(\sqrt{5}\right)^{2}}
Hisoblang: \left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{a}{12,604}=\frac{2\left(1-\sqrt{5}\right)}{1-5}
1 kvadratini chiqarish. \sqrt{5} kvadratini chiqarish.
\frac{a}{12,604}=\frac{2\left(1-\sqrt{5}\right)}{-4}
-4 olish uchun 1 dan 5 ni ayirish.
\frac{a}{12,604}=-\frac{1}{2}\left(1-\sqrt{5}\right)
-\frac{1}{2}\left(1-\sqrt{5}\right) ni olish uchun 2\left(1-\sqrt{5}\right) ni -4 ga bo‘ling.
\frac{a}{12,604}=-\frac{1}{2}-\frac{1}{2}\left(-1\right)\sqrt{5}
-\frac{1}{2} ga 1-\sqrt{5} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{a}{12,604}=-\frac{1}{2}+\frac{1}{2}\sqrt{5}
\frac{1}{2} hosil qilish uchun -\frac{1}{2} va -1 ni ko'paytirish.
\frac{250}{3151}a=\frac{\sqrt{5}-1}{2}
Tenglama standart shaklda.
\frac{\frac{250}{3151}a}{\frac{250}{3151}}=\frac{\sqrt{5}-1}{\frac{250}{3151}\times 2}
Tenglamaning ikki tarafini \frac{250}{3151} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
a=\frac{\sqrt{5}-1}{\frac{250}{3151}\times 2}
\frac{250}{3151} ga bo'lish \frac{250}{3151} ga ko'paytirishni bekor qiladi.
a=\frac{3151\sqrt{5}-3151}{500}
\frac{-1+\sqrt{5}}{2} ni \frac{250}{3151} ga bo'lish \frac{-1+\sqrt{5}}{2} ga k'paytirish \frac{250}{3151} ga qaytarish.