b uchun yechish
b=-\frac{\sqrt{2}\left(a-\sqrt{2}-3\right)}{2}
a uchun yechish
a=-\sqrt{2}\left(b-1\right)+3
Baham ko'rish
Klipbordga nusxa olish
a+b\sqrt{2}=3-3\sqrt{2}+4\sqrt{2}
3 ga 1-\sqrt{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
a+b\sqrt{2}=3+\sqrt{2}
\sqrt{2} ni olish uchun -3\sqrt{2} va 4\sqrt{2} ni birlashtirish.
b\sqrt{2}=3+\sqrt{2}-a
Ikkala tarafdan a ni ayirish.
\sqrt{2}b=-a+\sqrt{2}+3
Tenglama standart shaklda.
\frac{\sqrt{2}b}{\sqrt{2}}=\frac{-a+\sqrt{2}+3}{\sqrt{2}}
Ikki tarafini \sqrt{2} ga bo‘ling.
b=\frac{-a+\sqrt{2}+3}{\sqrt{2}}
\sqrt{2} ga bo'lish \sqrt{2} ga ko'paytirishni bekor qiladi.
b=\frac{\sqrt{2}\left(-a+\sqrt{2}+3\right)}{2}
3+\sqrt{2}-a ni \sqrt{2} ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}