a uchun yechish
a = \frac{\sqrt{3009} + 59}{2} \approx 56,927176304
a = \frac{59 - \sqrt{3009}}{2} \approx 2,072823696
Baham ko'rish
Klipbordga nusxa olish
\left(-a+2\right)a+\left(-a+2\right)\times 2-4=59\left(-a+2\right)
a qiymati 2 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini -a+2 ga ko'paytirish.
-a^{2}+2a+\left(-a+2\right)\times 2-4=59\left(-a+2\right)
-a+2 ga a ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-a^{2}+2a-2a+4-4=59\left(-a+2\right)
-a+2 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-a^{2}+4-4=59\left(-a+2\right)
0 ni olish uchun 2a va -2a ni birlashtirish.
-a^{2}=59\left(-a+2\right)
0 olish uchun 4 dan 4 ni ayirish.
-a^{2}=-59a+118
59 ga -a+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-a^{2}+59a=118
59a ni ikki tarafga qo’shing.
-a^{2}+59a-118=0
Ikkala tarafdan 118 ni ayirish.
a=\frac{-59±\sqrt{59^{2}-4\left(-1\right)\left(-118\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 59 ni b va -118 ni c bilan almashtiring.
a=\frac{-59±\sqrt{3481-4\left(-1\right)\left(-118\right)}}{2\left(-1\right)}
59 kvadratini chiqarish.
a=\frac{-59±\sqrt{3481+4\left(-118\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
a=\frac{-59±\sqrt{3481-472}}{2\left(-1\right)}
4 ni -118 marotabaga ko'paytirish.
a=\frac{-59±\sqrt{3009}}{2\left(-1\right)}
3481 ni -472 ga qo'shish.
a=\frac{-59±\sqrt{3009}}{-2}
2 ni -1 marotabaga ko'paytirish.
a=\frac{\sqrt{3009}-59}{-2}
a=\frac{-59±\sqrt{3009}}{-2} tenglamasini yeching, bunda ± musbat. -59 ni \sqrt{3009} ga qo'shish.
a=\frac{59-\sqrt{3009}}{2}
-59+\sqrt{3009} ni -2 ga bo'lish.
a=\frac{-\sqrt{3009}-59}{-2}
a=\frac{-59±\sqrt{3009}}{-2} tenglamasini yeching, bunda ± manfiy. -59 dan \sqrt{3009} ni ayirish.
a=\frac{\sqrt{3009}+59}{2}
-59-\sqrt{3009} ni -2 ga bo'lish.
a=\frac{59-\sqrt{3009}}{2} a=\frac{\sqrt{3009}+59}{2}
Tenglama yechildi.
\left(-a+2\right)a+\left(-a+2\right)\times 2-4=59\left(-a+2\right)
a qiymati 2 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini -a+2 ga ko'paytirish.
-a^{2}+2a+\left(-a+2\right)\times 2-4=59\left(-a+2\right)
-a+2 ga a ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-a^{2}+2a-2a+4-4=59\left(-a+2\right)
-a+2 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-a^{2}+4-4=59\left(-a+2\right)
0 ni olish uchun 2a va -2a ni birlashtirish.
-a^{2}=59\left(-a+2\right)
0 olish uchun 4 dan 4 ni ayirish.
-a^{2}=-59a+118
59 ga -a+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-a^{2}+59a=118
59a ni ikki tarafga qo’shing.
\frac{-a^{2}+59a}{-1}=\frac{118}{-1}
Ikki tarafini -1 ga bo‘ling.
a^{2}+\frac{59}{-1}a=\frac{118}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
a^{2}-59a=\frac{118}{-1}
59 ni -1 ga bo'lish.
a^{2}-59a=-118
118 ni -1 ga bo'lish.
a^{2}-59a+\left(-\frac{59}{2}\right)^{2}=-118+\left(-\frac{59}{2}\right)^{2}
-59 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{59}{2} olish uchun. Keyin, -\frac{59}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
a^{2}-59a+\frac{3481}{4}=-118+\frac{3481}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{59}{2} kvadratini chiqarish.
a^{2}-59a+\frac{3481}{4}=\frac{3009}{4}
-118 ni \frac{3481}{4} ga qo'shish.
\left(a-\frac{59}{2}\right)^{2}=\frac{3009}{4}
a^{2}-59a+\frac{3481}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(a-\frac{59}{2}\right)^{2}}=\sqrt{\frac{3009}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
a-\frac{59}{2}=\frac{\sqrt{3009}}{2} a-\frac{59}{2}=-\frac{\sqrt{3009}}{2}
Qisqartirish.
a=\frac{\sqrt{3009}+59}{2} a=\frac{59-\sqrt{3009}}{2}
\frac{59}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}