Y uchun yechish
Y=\frac{8X}{7}-Z
X uchun yechish
X=\frac{7\left(Y+Z\right)}{8}
Baham ko'rish
Klipbordga nusxa olish
X=\frac{7}{8}Y+\frac{7}{8}Z
\frac{7}{8} ga Y+Z ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{7}{8}Y+\frac{7}{8}Z=X
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\frac{7}{8}Y=X-\frac{7}{8}Z
Ikkala tarafdan \frac{7}{8}Z ni ayirish.
\frac{7}{8}Y=-\frac{7Z}{8}+X
Tenglama standart shaklda.
\frac{\frac{7}{8}Y}{\frac{7}{8}}=\frac{-\frac{7Z}{8}+X}{\frac{7}{8}}
Tenglamaning ikki tarafini \frac{7}{8} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
Y=\frac{-\frac{7Z}{8}+X}{\frac{7}{8}}
\frac{7}{8} ga bo'lish \frac{7}{8} ga ko'paytirishni bekor qiladi.
Y=\frac{8X}{7}-Z
X-\frac{7Z}{8} ni \frac{7}{8} ga bo'lish X-\frac{7Z}{8} ga k'paytirish \frac{7}{8} ga qaytarish.
X=\frac{7}{8}Y+\frac{7}{8}Z
\frac{7}{8} ga Y+Z ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}