Asosiy tarkibga oʻtish
V uchun yechish
Tick mark Image

Baham ko'rish

V=V^{2}
V^{2} hosil qilish uchun V va V ni ko'paytirish.
V-V^{2}=0
Ikkala tarafdan V^{2} ni ayirish.
V\left(1-V\right)=0
V omili.
V=0 V=1
Tenglamani yechish uchun V=0 va 1-V=0 ni yeching.
V=V^{2}
V^{2} hosil qilish uchun V va V ni ko'paytirish.
V-V^{2}=0
Ikkala tarafdan V^{2} ni ayirish.
-V^{2}+V=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
V=\frac{-1±\sqrt{1^{2}}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 1 ni b va 0 ni c bilan almashtiring.
V=\frac{-1±1}{2\left(-1\right)}
1^{2} ning kvadrat ildizini chiqarish.
V=\frac{-1±1}{-2}
2 ni -1 marotabaga ko'paytirish.
V=\frac{0}{-2}
V=\frac{-1±1}{-2} tenglamasini yeching, bunda ± musbat. -1 ni 1 ga qo'shish.
V=0
0 ni -2 ga bo'lish.
V=-\frac{2}{-2}
V=\frac{-1±1}{-2} tenglamasini yeching, bunda ± manfiy. -1 dan 1 ni ayirish.
V=1
-2 ni -2 ga bo'lish.
V=0 V=1
Tenglama yechildi.
V=V^{2}
V^{2} hosil qilish uchun V va V ni ko'paytirish.
V-V^{2}=0
Ikkala tarafdan V^{2} ni ayirish.
-V^{2}+V=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-V^{2}+V}{-1}=\frac{0}{-1}
Ikki tarafini -1 ga bo‘ling.
V^{2}+\frac{1}{-1}V=\frac{0}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
V^{2}-V=\frac{0}{-1}
1 ni -1 ga bo'lish.
V^{2}-V=0
0 ni -1 ga bo'lish.
V^{2}-V+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
-1 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{2} olish uchun. Keyin, -\frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
V^{2}-V+\frac{1}{4}=\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{2} kvadratini chiqarish.
\left(V-\frac{1}{2}\right)^{2}=\frac{1}{4}
V^{2}-V+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(V-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
V-\frac{1}{2}=\frac{1}{2} V-\frac{1}{2}=-\frac{1}{2}
Qisqartirish.
V=1 V=0
\frac{1}{2} ni tenglamaning ikkala tarafiga qo'shish.