A_n uchun yechish (complex solution)
A_{n}\neq 0
n=\frac{1}{S_{n}m}\text{ and }S_{n}\neq 0\text{ and }m\neq 0
A_n uchun yechish
A_{n}\neq 0
S_{n}\neq 0\text{ and }m\neq 0\text{ and }n=\frac{1}{S_{n}m}
S_n uchun yechish
S_{n}=\frac{1}{mn}
m\neq 0\text{ and }n\neq 0\text{ and }A_{n}\neq 0
Viktorina
Linear Equation
5xshash muammolar:
S _ { n } = \frac { A _ { n } } { m \cdot n ( A _ { n } ) }
Baham ko'rish
Klipbordga nusxa olish
S_{n}A_{n}mn=A_{n}
A_{n} qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini A_{n}mn ga ko'paytirish.
S_{n}A_{n}mn-A_{n}=0
Ikkala tarafdan A_{n} ni ayirish.
\left(S_{n}mn-1\right)A_{n}=0
A_{n}'ga ega bo'lgan barcha shartlarni birlashtirish.
A_{n}=0
0 ni S_{n}mn-1 ga bo'lish.
A_{n}\in \emptyset
A_{n} qiymati 0 teng bo‘lmaydi.
S_{n}A_{n}mn=A_{n}
A_{n} qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini A_{n}mn ga ko'paytirish.
S_{n}A_{n}mn-A_{n}=0
Ikkala tarafdan A_{n} ni ayirish.
\left(S_{n}mn-1\right)A_{n}=0
A_{n}'ga ega bo'lgan barcha shartlarni birlashtirish.
A_{n}=0
0 ni S_{n}mn-1 ga bo'lish.
A_{n}\in \emptyset
A_{n} qiymati 0 teng bo‘lmaydi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}