B uchun yechish (complex solution)
\left\{\begin{matrix}B=\frac{STaA^{2}}{41800000000000000000000000q}\text{, }&q\neq 0\text{ and }A\neq 0\text{ and }T\neq 0\text{ and }a\neq 0\\B\in \mathrm{C}\text{, }&S=0\text{ and }q=0\text{ and }A\neq 0\text{ and }T\neq 0\text{ and }a\neq 0\end{matrix}\right,
B uchun yechish
\left\{\begin{matrix}B=\frac{STaA^{2}}{41800000000000000000000000q}\text{, }&q\neq 0\text{ and }A\neq 0\text{ and }T\neq 0\text{ and }a\neq 0\\B\in \mathrm{R}\text{, }&S=0\text{ and }q=0\text{ and }A\neq 0\text{ and }T\neq 0\text{ and }a\neq 0\end{matrix}\right,
A uchun yechish (complex solution)
\left\{\begin{matrix}A=-200000000000S^{-\frac{1}{2}}T^{-\frac{1}{2}}a^{-\frac{1}{2}}\sqrt{B}\sqrt{1045q}\text{; }A=200000000000S^{-\frac{1}{2}}T^{-\frac{1}{2}}a^{-\frac{1}{2}}\sqrt{B}\sqrt{1045q}\text{, }&q\neq 0\text{ and }B\neq 0\text{ and }a\neq 0\text{ and }T\neq 0\text{ and }S\neq 0\\A\neq 0\text{, }&\left(q=0\text{ or }B=0\right)\text{ and }S=0\text{ and }a\neq 0\text{ and }T\neq 0\end{matrix}\right,
Viktorina
Algebra
5xshash muammolar:
S A = \frac { 418 \times 10 ^ { 23 } } { A \times T } \frac { B q } { a }
Baham ko'rish
Klipbordga nusxa olish
SAATa=a\times 418\times 10^{23}\times \frac{Bq}{a}
Tenglamaning ikkala tarafini ATa ga, AT,a ning eng kichik karralisiga ko‘paytiring.
SA^{2}Ta=a\times 418\times 10^{23}\times \frac{Bq}{a}
A^{2} hosil qilish uchun A va A ni ko'paytirish.
SA^{2}Ta=a\times 418\times 100000000000000000000000\times \frac{Bq}{a}
23 daraja ko‘rsatkichini 10 ga hisoblang va 100000000000000000000000 ni qiymatni oling.
SA^{2}Ta=a\times 41800000000000000000000000\times \frac{Bq}{a}
41800000000000000000000000 hosil qilish uchun 418 va 100000000000000000000000 ni ko'paytirish.
SA^{2}Ta=\frac{aBq}{a}\times 41800000000000000000000000
a\times \frac{Bq}{a} ni yagona kasrga aylantiring.
SA^{2}Ta=Bq\times 41800000000000000000000000
Surat va maxrajdagi ikkala a ni qisqartiring.
Bq\times 41800000000000000000000000=SA^{2}Ta
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
41800000000000000000000000qB=STaA^{2}
Tenglama standart shaklda.
\frac{41800000000000000000000000qB}{41800000000000000000000000q}=\frac{STaA^{2}}{41800000000000000000000000q}
Ikki tarafini 41800000000000000000000000q ga bo‘ling.
B=\frac{STaA^{2}}{41800000000000000000000000q}
41800000000000000000000000q ga bo'lish 41800000000000000000000000q ga ko'paytirishni bekor qiladi.
SAATa=a\times 418\times 10^{23}\times \frac{Bq}{a}
Tenglamaning ikkala tarafini ATa ga, AT,a ning eng kichik karralisiga ko‘paytiring.
SA^{2}Ta=a\times 418\times 10^{23}\times \frac{Bq}{a}
A^{2} hosil qilish uchun A va A ni ko'paytirish.
SA^{2}Ta=a\times 418\times 100000000000000000000000\times \frac{Bq}{a}
23 daraja ko‘rsatkichini 10 ga hisoblang va 100000000000000000000000 ni qiymatni oling.
SA^{2}Ta=a\times 41800000000000000000000000\times \frac{Bq}{a}
41800000000000000000000000 hosil qilish uchun 418 va 100000000000000000000000 ni ko'paytirish.
SA^{2}Ta=\frac{aBq}{a}\times 41800000000000000000000000
a\times \frac{Bq}{a} ni yagona kasrga aylantiring.
SA^{2}Ta=Bq\times 41800000000000000000000000
Surat va maxrajdagi ikkala a ni qisqartiring.
Bq\times 41800000000000000000000000=SA^{2}Ta
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
41800000000000000000000000qB=STaA^{2}
Tenglama standart shaklda.
\frac{41800000000000000000000000qB}{41800000000000000000000000q}=\frac{STaA^{2}}{41800000000000000000000000q}
Ikki tarafini 41800000000000000000000000q ga bo‘ling.
B=\frac{STaA^{2}}{41800000000000000000000000q}
41800000000000000000000000q ga bo'lish 41800000000000000000000000q ga ko'paytirishni bekor qiladi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}